| A. | $\frac{9}{10}$ | B. | $\frac{15}{32}$ | C. | $\frac{9}{32}$ | D. | $\frac{7}{32}$ |
分析 利用圓的標(biāo)準(zhǔn)方程求出圓的圓心及半徑,求出當(dāng)直線與圓心和(0,0)連線垂直時(shí)的弦長即最短的弦長,求出直徑即最大的弦長,求出最大弦長與最小弦長之間的所有的直線條數(shù),選出長度不超過14的直線條數(shù),利用古典概型概率公式求出概率.
解答 解:(x-4$\sqrt{5}$)2+(y-8)2=169的圓心為(4$\sqrt{5}$,8),半徑為13,
∵(0,0)在圓的內(nèi)部且圓心與(0,0)的距離為12
∴過點(diǎn)O(0,0)作的直線中,最短的弦是直線與圓心和(0,0)連線垂直
最短的弦長為2$\sqrt{169-144}$=10,
過點(diǎn)O(0,0)作的直線中,最長的弦是直徑,其長為26
弦長均為整數(shù)的所有直線的條數(shù)有2×(25-10)+2=32
其中長度不超過14的有:10,11,11,12,12,13,13,14,14共9條
所以長度不超過14的概率為$\frac{9}{32}$.
故選C.
點(diǎn)評(píng) 求直線的最小弦長、最大弦長問題一般利用圓的幾何性質(zhì):當(dāng)直線與定點(diǎn)和圓心連線垂直時(shí),弦長最小,當(dāng)直線是圓的直徑時(shí),弦長最大.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{4}{5}$ | B. | $\frac{1}{2}$ | C. | -$\frac{4}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{7}$ | B. | 3 | C. | 2$\sqrt{2}$ | D. | $\sqrt{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-∞,0) | B. | (0,+∞) | C. | (1,+∞) | D. | (4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com