【題目】如圖,在下列四個(gè)正方體中,A,B為正方體的兩個(gè)頂點(diǎn),M,N,Q為所在棱的中點(diǎn),則在這四個(gè)正方體中,直線AB與平面MNQ不垂直的是
![]()
A.
B. ![]()
C.
D. ![]()
【答案】D
【解析】
由中位線定理和異面直線所成角,以及線面垂直的判定定理,即可得到正確結(jié)論.
解:對于A,AB為體對角線,MN,MQ,NQ分別為棱的中點(diǎn),由中位線定理可得它們平行于所對應(yīng)的面對角線,連接另一條面對角線,由線面垂直的判定可得AB垂直于MN,MQ,NQ,可得AB垂直于平面MNQ;
對于B,AB為上底面的對角線,顯然AB垂直于MN,與AB相對的下底面的面對角線平行,且與直線NQ垂直,可得AB垂直于平面MNQ;
對于C,AB為前面的面對角線,顯然AB垂直于MN,QN在下底面且與棱平行,此棱垂直于AB所在的面,即有AB垂直于QN,可得AB垂直于平面MNQ;
對于D,AB為上底面的對角線,MN平行于前面的一條對角線,此對角線與AB所成角為
,
則AB不垂直于平面MNQ.
故選:D.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)
,若存在定義域
內(nèi)某個(gè)區(qū)間
,使得
在
上的值域也是
,則稱函數(shù)
在定義域
上封閉.如果函數(shù)
在
上封閉,那么實(shí)數(shù)
的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差(最高溫度與最低溫度的差)大小與某反季節(jié)大豆新品種一天內(nèi)發(fā)芽數(shù)之間的關(guān)系進(jìn)行了分析研究,他們分別記錄了12月1日至12月6日每天晝夜最高、最低的溫度(如圖甲),以及實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù)情況(如圖乙),得到如下資料:
![]()
最高溫度
最低溫度
甲
![]()
乙
(1)請畫出發(fā)芽數(shù)y與溫差x的散點(diǎn)圖;
(2)若建立發(fā)芽數(shù)y與溫差x之間的線性回歸模型,請用相關(guān)系數(shù)說明建立模型的合理性;
(3)①求出發(fā)芽數(shù)y與溫差x之間的回歸方程
(系數(shù)精確到0.01);
②若12月7日的晝夜溫差為
,通過建立的y關(guān)于x的回歸方程,估計(jì)該實(shí)驗(yàn)室12月7日當(dāng)天100顆種子的發(fā)芽數(shù).
參考數(shù)據(jù):![]()
![]()
![]()
.
參考公式:
相關(guān)系數(shù):
(當(dāng)
時(shí),具有較強(qiáng)的相關(guān)關(guān)系).
回歸方程
中斜率和截距計(jì)算公式:![]()
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C是橢圓W:
上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn).
(I)當(dāng)點(diǎn)B是W的右頂點(diǎn),且四邊形OABC為菱形時(shí),求此菱形的面積.
(II)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形OABC是否可能為菱形,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)
,下列判斷正確的是( )
A.
是
的極大值點(diǎn)
B.函數(shù)
有且只有1個(gè)零點(diǎn)
C.存在正實(shí)數(shù)
,使得
成立
D.對任意兩個(gè)正實(shí)數(shù)
,
,且
,若
,則
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)分別為
,
,過點(diǎn)
的直線與橢圓
交于
兩點(diǎn),延長
交橢圓
于點(diǎn)
,
的周長為8.
![]()
(1)求
的離心率及方程;
(2)試問:是否存在定點(diǎn)
,使得
為定值?若存在,求
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已定義
,已知函數(shù)
的定義域都是
,則下列四個(gè)命題中為真命題的是_________.(寫出所有真命題的序號(hào))
① 若
都是奇函數(shù),則函數(shù)
為奇函數(shù).
② 若
都是偶函數(shù),則函數(shù)
為偶函數(shù).
③ 若
都是增函數(shù),則函數(shù)
為增函數(shù).
④ 若
都是減函數(shù),則函數(shù)
為減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地?cái)M建造一座體育館,其設(shè)計(jì)方案側(cè)面的外輪廓線如圖所示:曲線
是以點(diǎn)
為圓心的圓的一部分,其中![]()
,
是圓的切線,且
,曲線
是拋物線![]()
的一部分,
,且
恰好等于圓
的半徑.
![]()
(1)若
米,
米,求
與
的值;
(2)若體育館側(cè)面的最大寬度
不超過75米,求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com