【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(其中
為參數(shù))曲線
的普通方程為
,以坐標(biāo)原點(diǎn)為極點(diǎn),以
軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線
和曲線
的極坐標(biāo)方程;
(2)射線
:
依次與曲線
和曲線
交于
、
兩點(diǎn),射線
:
依次與曲線
和曲線
交于
、
兩點(diǎn),求
的最大值.
【答案】(1)
的極坐標(biāo)方程為
,
的極坐標(biāo)方程為
;(2)
.
【解析】
(1)將兩曲線的方程均化為普通方程,然后由
可將兩曲線的方程化為極坐標(biāo)方程;
(2)作出圖形,設(shè)點(diǎn)
、
的極坐標(biāo)分別為
、
,將這兩點(diǎn)的極坐標(biāo)代入橢圓的極坐標(biāo)方程可得出
、
的表達(dá)式,可得出
,利用基本不等式可求出
的最大值.
(1)由曲線
的參數(shù)方程為
(其中
為參數(shù)),
所以曲線
的普通方程為
,
由
則曲線
的極坐標(biāo)方程為
.
又曲線
的普通方程為
,
由
,得曲線
的極坐標(biāo)方程為
;
(2)如圖,由題意知
,
![]()
點(diǎn)
、
的極坐標(biāo)分別為
、
,
將這兩點(diǎn)的極坐標(biāo)代入橢圓的極坐標(biāo)方程得
,
,
![]()
,
,
當(dāng)且僅當(dāng)
,即
,不等式取等號(hào),
因此,
的最大值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,(
).
(Ⅰ)若函數(shù)
有且只有一個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍;
(Ⅱ)設(shè)
,若
,若函數(shù)對(duì)
恒成立,求實(shí)數(shù)
的取值范圍.(
是自然對(duì)數(shù)的底數(shù),
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形
為矩形,
平面
,連接
,
,
,
,
,則下列各組向量中,數(shù)量積不為零的是( )
A.
與
B.
與
C.
與
D.
與![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】棋盤(pán)上標(biāo)有第
、
、
、
、
站,棋子開(kāi)始位于第
站,棋手拋擲均勻硬幣走跳棋游戲,若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到調(diào)到第
站或第
站時(shí),游戲結(jié)束.設(shè)棋子位于第
站的概率為
.
(1)當(dāng)游戲開(kāi)始時(shí),若拋擲均勻硬幣
次后,求棋手所走步數(shù)之和
的分布列與數(shù)學(xué)期望;
(2)證明:
;
(3)求
、
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線
,過(guò)其焦點(diǎn)
的直線與拋物線相交于
、
兩點(diǎn),滿足
.
(1)求拋物線
的方程;
(2)已知點(diǎn)
的坐標(biāo)為
,記直線
、
的斜率分別為
,
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年高考剛過(guò),為了解考生對(duì)全國(guó)2卷數(shù)學(xué)試卷難度的評(píng)價(jià),隨機(jī)抽取了某學(xué)校50名男考生與50名女考生,得到下面的列聯(lián)表:
非常困難 | 一般 | |
男考生 | 20 | 30 |
女考生 | 40 | 10 |
(1)分別估計(jì)該學(xué)校男考生、女考生覺(jué)得全國(guó)2卷數(shù)學(xué)試卷非常困難的概率;
(2)從該學(xué)校隨機(jī)抽取3名男考生,2名女考生,求恰有4名考生覺(jué)得全國(guó)2卷數(shù)學(xué)試卷非常困難的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)
(
是常數(shù),且
)滿足條件:
,且方程
有兩個(gè)相等實(shí)根.
(1)求
的解析式;
(2)是否存在實(shí)數(shù)
,使
的定義域和值域分別為
和
?若存在,求出
的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次綜合素質(zhì)測(cè)試中,共設(shè)有40個(gè)考室,每個(gè)考室30名考生.在考試結(jié)束后,為調(diào)查其測(cè)試前的培訓(xùn)輔導(dǎo)情況與測(cè)試成績(jī)的相關(guān)性,抽取每個(gè)考室中座位號(hào)為05的考生,統(tǒng)計(jì)了他們的成績(jī),得到如圖所示的頻率分布直方圖.
![]()
(1)在這個(gè)調(diào)查采樣中,采用的是什么抽樣方法?
(2)估計(jì)這次測(cè)試中優(yōu)秀(80分及以上)的人數(shù);
(3)寫(xiě)出這40名考生成績(jī)的眾數(shù)、中位數(shù)、平均數(shù)的估計(jì)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】阿波羅尼斯(約公元前
年)證明過(guò)這樣一個(gè)命題:平面內(nèi)到兩定點(diǎn)距離之比為常數(shù)
的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱為阿波羅尼斯圓.若平面內(nèi)兩定點(diǎn)
、
間的距離為
,動(dòng)點(diǎn)
滿足
,則
的最小值為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com