【題目】某市為了宣傳環(huán)保知識,舉辦了一次“環(huán)保知識知多少”的問卷調(diào)查活動(一人答一份).現(xiàn)從回收的年齡在2060歲的問卷中隨機(jī)抽取了100份, 統(tǒng)計(jì)結(jié)果如下面的圖表所示.
年齡 分組 | 抽取份 數(shù) | 答對全卷的人數(shù) | 答對全卷的人數(shù)占本組的概率 |
[20,30) | 40 | 28 | 0.7 |
[30,40) | n | 27 | 0.9 |
[40,50) | 10 | 4 | b |
[50,60] | 20 | a | 0.1 |
![]()
(1)分別求出n, a, b, c的值;
(2)從年齡在[40,60]答對全卷的人中隨機(jī)抽取2人授予“環(huán)保之星”,求年齡在[50,60] 的人中至少有1人被授予“環(huán)保之星”的概率.
【答案】(1)
;(2)
.
【解析】試題分析:(1)根據(jù)頻率直方分布圖,通過概率的和為1,求求出n,a,b,c的值,
(2)年齡在[40,50)中答對全卷的4人記為A,B,C,D,年齡在[50,60]中答對全卷的2人記為a,b,分別列舉出所有的基本事件,根據(jù)概率公式計(jì)算即可.
試題解析:
(1)因?yàn)槌槿】倖柧頌?00份,所以n=100-(40+10+20)=30.
年齡在
中,抽取份數(shù)為10份,答對全卷人數(shù)為4人,所以b=
=0.4.
年齡在
中,抽取份數(shù)為20份,答對全卷人數(shù)占本組的概率為0.1,所以
=0.1,得
.
根據(jù)頻率直方分布圖,得(0.04+0.03+c+0.01)×10=1,解得
.
(2)因?yàn)槟挲g在
與
中答對全卷的人數(shù)分別為4人與2人.
年齡在
中答對全卷的4人記為
,
,
,
,年齡在
中答對全卷的2人記為
,
,則從這6人中隨機(jī)抽取2人授予“環(huán)保之星”獎的所有可能的情況是:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,共15種(8分).
其中所抽取年齡在
的人中至少有1人被授予“環(huán)保之星”的情況是:
,
,
,
,
,
,
,
,
共9種.
故所求的概率為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的命題有__________.
①回歸直線
恒過樣本點(diǎn)的中心
,且至少過一個樣本點(diǎn);
②將一組數(shù)據(jù)的每個數(shù)據(jù)都加一個相同的常數(shù)后,方差不變;
③用相關(guān)指數(shù)
來刻面回歸效果;表示預(yù)報變量對解釋變量變化的貢獻(xiàn)率,越接近于1,說明模型的擬合效果越好;
④若分類變量
和
的隨機(jī)變量
的觀測值
越大,則“
與
相關(guān)”的可信程度越小;
⑤.對于自變量
和因變量
,當(dāng)
取值一定時,
的取值具有一定的隨機(jī)性,
,
間的這種非確定關(guān)系叫做函數(shù)關(guān)系;
⑥.殘差圖中殘差點(diǎn)比較均勻的地落在水平的帶狀區(qū)域中,說明選用的模型比較合適;
⑦.兩個模型中殘差平方和越小的模型擬合的效果越好.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知拋物線
,過點(diǎn)
任作一直線與
相交于
兩點(diǎn),過點(diǎn)
作
軸的平行線與直線
相交于點(diǎn)
為坐標(biāo)原點(diǎn)).
(1)證明: 動點(diǎn)
在定直線上;
(2)作
的任意一條切線
(不含
軸), 與直線
相交于點(diǎn)
與(1)中的定直線相交于點(diǎn)
.
證明:
為定值, 并求此定值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
:
(
)的焦點(diǎn)為
,點(diǎn)
在拋物線
上,且
,直線
與拋物線
交于
,
兩點(diǎn),
為坐標(biāo)原點(diǎn).
(1)求拋物線
的方程;
(2)求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}中,a1=2,
(n∈N*).
(1)證明數(shù)列
是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)
,若數(shù)列{bn}的前n項(xiàng)和是Tn , 求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線G:x2=2py(p>0),直線y=k(x﹣1)+2與拋物線G相交A(x1 , y1),B(x2 , y2)(x1<x2),過A,B點(diǎn)分別作拋物線G的切線L1 , L2 , 兩切線L1 , L2相交H(x,y),
(1)若k=1,有 L1⊥L2 , 求拋物線G的方程;
(2)若p=2,△ABH的面積為S1 , 直線AB與拋物線G圍成封閉圖形的面積為S2 , 證明:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)從參加環(huán)保知識竟賽的學(xué)生中抽取了部分學(xué)生的成績進(jìn)行分析,不過作好的莖葉圖和頻率分布直方圖因故均受到不同程度的損壞,其可見部分信息如圖所示,據(jù)此解答下列問題:
![]()
(1)求抽取學(xué)生成績的中位數(shù),并修復(fù)頻率分布直方圖;
(2)根據(jù)修復(fù)的頻率分布直方圖估計(jì)該中學(xué)此次環(huán)保知識競賽的平均成績。(以各組的區(qū)間中點(diǎn)值代表該組的各個值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐
中,平面
平面
,
,
,
為
的中點(diǎn),
為
的中點(diǎn),
在棱
上.
![]()
(
)當(dāng)
為
的中點(diǎn)時,證明:
平面
.
(
)求證:
平面
.
(
)是否存在點(diǎn)
使得
平面
?若存在,求出
的值,若不存在,說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com