已知四棱錐
的底面為直角梯形,
,
底面
,且
,
,
是
的中點。![]()
(Ⅰ)證明:面
面
;
(Ⅱ)求
與
所成的角;
(Ⅲ)求面
與面
所成二面角的大小。
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱ABC-A1B1C1的側(cè)棱AA1⊥平面ABC,△ABC為正三角形,且側(cè)面AA1C1C是邊長為2的正方形,E是
的中點,F在棱CC1上。![]()
(1)當(dāng)
CF時,求多面體ABCFA1的體積;
(2)當(dāng)點F使得A1F+BF最小時,判斷直線AE與A1F是否垂直,并證明的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知四棱錐
平面
,底面
為直角梯形,
,且
,
.![]()
(1)點
在線段
上運動,且設(shè)
,問當(dāng)
為何值時,
平面
,并證明你的結(jié)論;
(2)當(dāng)
面
,且
,
求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱ABC—A1B1C1的側(cè)棱AA1⊥底面ABC,∠ACB = 90°,E是棱CC1上中點,F(xiàn)是AB中點,AC = 1,BC = 2,AA1 = 4.![]()
(1)求證:CF∥平面AEB1;(2)求三棱錐C-AB1E的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C丄平面ABCD,且AB=BC=CA=
,AD=CD=1.![]()
求證:BD⊥AA1;
若四邊形
是菱形,且
,求四棱柱
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐
中,
是正方形,E是
的中點,![]()
(1)若
,求 PC與面AC所成的角
(2) 求證:
平面![]()
(3) 求證:平面PBC⊥平面PCD
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點,PA=2AB=2.![]()
(Ⅰ)若F為PC的中點,求證PC⊥平面AEF;
(Ⅱ)求四棱錐P-ABCD的體積V.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)
如圖的幾何體中,
平面
,
平面
,△
為等邊三角形,
,
為
的中點.![]()
(1)求證:
平面
;
(2)求證:平面
平面
;
(3)求此幾何體的體積。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com