(本小題共14分)
在如圖的多面體中,
⊥平面
,
,
,
,
,
,
,
是
的中點(diǎn).
![]()
(Ⅰ)
求證:
平面
;
(Ⅱ)
求證:
;
(Ⅲ)
求二面角
的余弦值.
解:(Ⅰ)證明:∵
,
∴
.
又∵
,
是
的中點(diǎn),
∴
,
∴四邊形
是平行四邊形,
∴
. ……………2分
∵
平面
,
平面
,
∴
平面
.
…………………4分
![]()
∴四邊形
為正方形,
∴
,
………………………7分
又
平面
,
平面
,
∴
⊥平面
.
……………………8分
∵
平面
,
∴
.
………………………9分
解法2
∵
平面
,
平面
,
平面
,∴
,
,
又
,
∴
兩兩垂直. ……………………5分
以點(diǎn)E為坐標(biāo)原點(diǎn),
分別為
軸建立如圖的空間直角坐標(biāo)系.
由已知得,
(0,0,2),
(2,0,0),
(2,4,0),
(0,3,0),
(0,2,2),
(2,2,0). …………………………6分
∴
,
,………7分
∴
, ………8分
∴
. …………………………9分
![]()
【解析】略
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題共14分)
數(shù)列
的前n項(xiàng)和為
,點(diǎn)
在直線![]()
上.
(I)求證:數(shù)列
是等差數(shù)列;
(II)若數(shù)列
滿足
,求數(shù)列
的前n項(xiàng)和![]()
(III)設(shè)
,求證:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題共14分)
如圖,四棱錐
的底面是正方形,
,點(diǎn)E在棱PB上。
![]()
(Ⅰ)求證:平面
;
(Ⅱ)當(dāng)
且E為PB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2009北京理)(本小題共14分)
已知雙曲線
的離心率為
,右準(zhǔn)線方程為![]()
(Ⅰ)求雙曲線
的方程;
(Ⅱ)設(shè)直線
是圓
上動(dòng)點(diǎn)
處的切線,
與雙曲線
交
于不同的兩點(diǎn)
,證明
的大小為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆度廣東省高二上學(xué)期11月月考理科數(shù)學(xué)試卷 題型:解答題
(本小題共14分)在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD
底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EF
PB交PB于點(diǎn)F
⑴求證:PA//平面EDB
⑵求證:PB
平面EFD
⑶求二面角C-PB-D的大小
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年北京市崇文區(qū)高三下學(xué)期二模數(shù)學(xué)(文)試題 題型:解答題
(本小題共14分)
正方體
的棱長(zhǎng)為
,
是
與
的交點(diǎn),
為
的中點(diǎn).
(Ⅰ)求證:直線
∥平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求三棱錐
的體積.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com