(12分)(1)求
的值.
(2)若
,
,
,求
的值.
科目:高中數(shù)學 來源:2011屆海南省?谑懈呷呖颊{研考試理科數(shù)學 題型:解答題
(本小題滿分12分)
某市為了對學生的數(shù)理(數(shù)學與物理)學習能力進行分析,從10000名學生中隨機抽出100位學生的數(shù)理綜合學習能力等級分數(shù)(6分制)作為樣本,分數(shù)頻數(shù)分布如下表:
| 等級得分 | ||||||
| 人數(shù) | 3 | 17 | 30 | 30 | 17 | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年海南省?谑懈呷呖颊{研考試理科數(shù)學 題型:解答題
(本小題滿分12分)
某市為了對學生的數(shù)理(數(shù)學與物理)學習能力進行分析,從10000名學生中隨機抽出100位學生的數(shù)理綜合學習能力等級分數(shù)(6分制)作為樣本,分數(shù)頻數(shù)分布如下表:
|
等級得分 |
|
|
|
|
|
|
|
人數(shù) |
3 |
17 |
30 |
30 |
17 |
3 |
(Ⅰ)如果以能力等級分數(shù)大于4分作為良好的標準,從樣本中任意抽。裁麑W生,求恰有1名學生為良好的概率;
(Ⅱ)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如區(qū)間
的中點值為1.5)作為代表:
(ⅰ)據(jù)此,計算這100名學生數(shù)理學習能力等級分數(shù)的期望
及標準差
(精確到0.1);
(ⅱ) 若總體服從正態(tài)分布,以樣本估計總體,估計該市這10000名學生中數(shù)理學習能力等級在
范圍內的人數(shù) .
(Ⅲ)從這10000名學生中任意抽取5名同學,
他們數(shù)學與物理單科學習能力等級分
數(shù)如下表:
![]()
![]()
(。┱埉嫵錾媳頂(shù)據(jù)的散點圖;
(ⅱ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出
關于
的線性回歸方程
(附參考數(shù)據(jù):
)
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年福建省廈門市高三上學期期中考試數(shù)學卷 題型:解答題
(本小題滿分12分)
已知過點
的動直線
與圓
:
相交于
、
兩點,
是
中點,
與直線
:
相交于
.
(1)求證:當
與
垂直時,
必過圓心
;
(2)當
時,求直線
的方程;
(3)探索
是否與直線
的傾斜角有關,若無關,請求出其值;若有關,請說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源:2010年山西省忻州市高二下學期期末聯(lián)考(文科)數(shù)學卷 題型:解答題
(本題滿分12分)(學選修4-4的選做題1,沒學的選做題2)
題1:已知點M是橢圓C:+ =1上的任意一點,直線l:x+2y-10=0.
(1)設x=3cosφ,φ為參數(shù),求橢圓C的參數(shù)方程;
(2)求點M到直線l距離的最大值與最小值.
題2:函數(shù)
的一個零點是1,另一個零點在(-1,0)內,(1)求
的取值范圍;
(2)求出
的最大值或最小值,并用
表示.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com