(本小題滿分12分)如圖:在三棱錐
中,已知點(diǎn)
、
、
分別為棱
、
、
的中點(diǎn).
(1)求證:
∥平面
;
(2)若
,
,求證:平面
⊥平面
.![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
已知平面
//平面
,AB、CD是夾在
、
間的兩條線段,A、C在
內(nèi),B、D在
內(nèi),點(diǎn)E、F分別在AB、CD上,且
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖
,在四棱錐
中,![]()
平面
,底面
是菱形,點(diǎn)O是對(duì)角線
與
的交點(diǎn),
是
的中點(diǎn),
.![]()
(1) 求證:
平面
;
(2) 平面![]()
平面
;
(3) 當(dāng)四棱錐
的體積等于
時(shí),求
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
如圖,四棱錐P—ABCD中,PB⊥底面ABCD,CD⊥PD,底面ABCD為直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,點(diǎn)E在棱PA上,且PE=2EA。
(1)求直線PC與平面PAD所成角的余弦值;(6分)
(2)求證:PC//平面EBD;(4分)
(3)求二面角A—BE—D的余弦值.(4分)![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)如圖,在三棱錐
中,面
面
,
是正三角形,
,
.
(Ⅰ)求證:
;
(Ⅱ)求平面DAB與平面ABC的夾角的余弦值;
(Ⅲ)求異面直線
與
所成角的余弦值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)如圖,在矩形ABCD中,AB=2BC,點(diǎn)M在邊CD上,點(diǎn)F在邊AB上,且
,垂足為E,若將
沿AM折起,使點(diǎn)D位于
位置,連接
,
得四棱錐
.
(1)求證:
;(2)若
,直線
與平面ABCM所成角的大小為
,求直線
與平面ABCM所成角的正弦值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直三棱柱ABC-
中,
,D,E分別為BC,
的中點(diǎn),
的中點(diǎn),四邊形
是邊長(zhǎng)為6的正方形.![]()
(1)求證:
平面
;
(2)求證:
平面
;
(3)求二面角
的余弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com