【題目】如圖,∠BAC=
,P為∠BAC內(nèi)部一點,過點P的直線與∠BAC的兩邊交于點B,C,且PA⊥AC,AP=
.
(Ⅰ)若AB=3,求PC;
(Ⅱ)求
的取值范圍.![]()
【答案】解:(Ⅰ)在△PAB中,由余弦定理知PB2=AP2+AB2﹣2APABcos
=3,得PB=
=AP, 則∠BPA=
,∠APC=
,
在Rt△APC中,PC=
=2
,
(Ⅱ)因為∠APC=θ,則∠ABP=θ﹣
,
在Rt△APC中,PC=
,
在△PAB中,由正弦定理知
=
,得PB=
,
于是
+
=
+
=
=sinθ,
由題意知
<θ<
,
故
<sinθ<1,
即
+
的取值范圍為(
,1)
【解析】(Ⅰ)根據(jù)余弦定理求出PB的長,再解直角三角形即可求出答案,(Ⅱ)根據(jù)正弦定理得PB=
,在Rt△APC中,PC=
,繼而得到于是
+
=sinθ,根據(jù)正弦函數(shù)的圖象和性質(zhì)即可求出答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn=2an﹣n.
(Ⅰ)證明數(shù)列{an+1}是等比數(shù)列,求數(shù)列{an}的通項公式;
(Ⅱ)記bn=
+
,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線y2=2px(p>0)的焦點F的直線l與拋物線交于B,C兩點,l與拋物線的準(zhǔn)線交于點A,且|AF|=6,
=2
,
(1)求拋物線方程.
(2)求|BC|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在2012年的自主招生考試成績中隨機抽取100名中學(xué)生的筆試成績,按成績分組,得到的頻率分布表如下所示.
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | [160,165) | 5 | 0.050 |
第2組 | [165,170) | ① | 0.350 |
第3組 | [170,175) | 30 | ② |
第4組 | [175,180) | 20 | 0.200 |
第5組 | [180,185) | 10 | 0.100 |
合計 | 100 | 1.00 |
(1)請先求出頻率分布表中①、②位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖,并從頻率分布直方圖中求出中位數(shù)(中位數(shù)保留整數(shù));
![]()
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,從這6名學(xué)生中隨機抽取2名學(xué)生接受A考官進(jìn)行面試,求:第4組至少有一名學(xué)生被考官A面試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生對其親屬30人的飲食習(xí)慣進(jìn)行了一次調(diào)查,并用下圖所示的莖葉圖表示30人的飲食指數(shù).(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主)
(1)根據(jù)以上數(shù)據(jù)完成下面的2×2列聯(lián)表:
主食 蔬菜 | 主食 肉類 | 總計 | |
50歲以下 | |||
50歲以上 | |||
總計 |
(2)能否在犯錯誤的概率不超過0.010的前提下認(rèn)為“其親屬的飲食習(xí)慣與年齡有關(guān)”?并寫出簡要分析.
附參考公式:![]()
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
=1,直線l過點M(﹣1,0),與橢圓C交于A,B兩點,交y軸于點N.
(1)設(shè)MN的中點恰在橢圓C上,求直線l的方程;
(2)設(shè)
=λ
,
=μ
,試探究λ+μ是否為定值,若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的單調(diào)函數(shù),且對任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3,則方程f(x)﹣f′(x)=2的解所在的區(qū)間是( )
A.(0,
)
B.(
,1)
C.(1,2)
D.(2,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,
,
.
(1)若
是
的充分不必要條件,求實數(shù)
的取值范圍;
(2)若
,“
”為真命題,“
”為假命題,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+ax2+(2a+1)x.(12分)
(1)討論f(x)的單調(diào)性;
(2)當(dāng)a<0時,證明f(x)≤﹣
﹣2.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com