欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

現(xiàn)對(duì)某市工薪階層關(guān)于“樓市限購(gòu)令”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50人,他們?cè)率杖氲念l數(shù)分布及對(duì)“樓市限購(gòu)令”贊成人數(shù)如表.
月收入(單位百元)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)510151055
贊成人數(shù)4812521
(1)由如表統(tǒng)計(jì)數(shù)據(jù)求所示2乘2列聯(lián)表中的a,b,c,d的值,并問是否有99%的把握認(rèn)為“月收入以5500為分界點(diǎn)對(duì)“樓市限購(gòu)令”的態(tài)度有差異;
月收入低于55百元的人數(shù)月收入不低于55百元的人數(shù)合計(jì)
贊成a      b
不贊成       c      d
合計(jì) 50
(2)若對(duì)在[15,25),[25,35)的被調(diào)查中各隨機(jī)選取一人進(jìn)行追蹤調(diào)查,記選中的2人中不贊成“樓市限購(gòu)令”人數(shù)為ξ,求隨機(jī)變量ξ的分布列.
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k)0.15    0.10    0.0   0.025   0.01
k2.072    2.706    3.841  5.024  6.635 
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專題:應(yīng)用題,概率與統(tǒng)計(jì)
分析:(1)根據(jù)提供數(shù)據(jù),可填寫表格,利用公式,可計(jì)算K2的值,根據(jù)臨界值表,即可得到結(jié)論;
(2)由題意隨機(jī)變量ξ的可能取值是0,1,2,結(jié)合變量對(duì)應(yīng)的事件和等可能事件的概率,寫出變量的概率分布列和期望值的公式進(jìn)行求解即可.
解答: 解:(1)月收入不低于55百元人數(shù)為5+5=10,b=3,d=7,
月收入不低于55百元人數(shù)為5+10+15+10=40,a=4+8+12+5=29,c=40-29=11,
贊成的總?cè)藬?shù)為3+29=32,則不贊成的總?cè)藬?shù)7+11=18,
K2=
50(3×11-7×29)
(3+7)(29+11)(3+29)(7+11)
≈6.27<6.635
所以沒有99%的把握認(rèn)為月收入以5500為分界點(diǎn)對(duì)“樓市限購(gòu)令”的態(tài)度有差異.(6分)
(2)ξ所有可能取值有0,1,2,
P(ξ=0)=
1
5
×
2
10
=
1
25
,P(ξ=1)=
1
5
×
8
10
+
4
5
×
2
10
=
8
25
,P(ξ=2)=
4
5
×
8
10
=
16
25

所以ξ的分布列是
ξ012
P
1
25
8
25
16
25
所以ξ的期望值是Eξ=0+1×
8
25
+2×
16
25
=
8
5
.…(12分)
點(diǎn)評(píng):本題主要考查了概率、獨(dú)立性檢驗(yàn)的應(yīng)用、離散型隨機(jī)變量的期望與方差,是一道綜合題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

運(yùn)行如圖所示程序,輸出結(jié)果為( 。
A、32B、33C、61D、63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:
y2
λ
+x2=1.
(Ⅰ)由曲線C上任一點(diǎn)E向x軸作垂線,垂足為F,動(dòng)點(diǎn)P滿足
FP
=3
EP
,求P的軌跡方程,點(diǎn)P的軌跡可能是圓嗎?請(qǐng)說明理由;
(Ⅱ)如果直線l的斜率為
2
,且過點(diǎn)M(0,-2),直線l交曲線C于A、B兩點(diǎn),求
MA
MB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y滿足約束條件 
x≥1
y≥x
2x+3y≤6
,則z=2x+y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x+
4
x
的單調(diào)遞減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)邊分別是a、b、c,且cosA=
1
3

(Ⅰ)求cos(B+C)+cos2A的值:
(Ⅱ)若a=2
2
,b+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1(x≥2)
x-1(x<2)
,g(x)=g′(2)x2-3x+5,則方程f[g′(1)]=x的解為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△AOB的邊OA、OB上分別有一點(diǎn)P、Q,已知OP:PA=1:2,OQ:QB=3:2,連結(jié)AQ、BP,設(shè)它們交于R點(diǎn),若
OA
=
a
OB
=
b
,設(shè)
OR
a
b
,試求出λ和μ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+y2=1(a>1)的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)S(0,-
1
3
)的直線l交橢圓C于A、B兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過點(diǎn)T?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案