欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.已知sinα-cosα=$\sqrt{2}$,則sinα•cosα=-$\frac{1}{2}$.

分析 把已知等式兩邊平方,利用完全平方公式及同角三角函數(shù)間的基本關(guān)系化簡(jiǎn),整理即可求出所求式子的值.

解答 解:把sinα-cosα=$\sqrt{2}$兩邊平方得:(sinα-cosα)2=sin2α+cos2α-2sinαcosα=1-2sinαcosα=2,
則sinα•cosα=-$\frac{1}{2}$,
故答案為:-$\frac{1}{2}$

點(diǎn)評(píng) 此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)$\overrightarrow{a}$是已知的平面向量且$\overrightarrow{a}$≠0.關(guān)于向量$\overrightarrow{a}$的分解,有如下四個(gè)命題:
①給定向量$\overrightarrow$,總存在向量$\overrightarrow{c}$,使$\overrightarrow{a}$=$\overrightarrow$+$\overrightarrow{c}$;
②給定向量$\overrightarrow$和$\overrightarrow{c}$,總存在實(shí)數(shù)λ和μ,使$\overrightarrow{a}$=λ$\overrightarrow$+μ$\overrightarrow{c}$;
③給定單位向量$\overrightarrow$和正數(shù)μ,總存在單位向量$\overrightarrow{c}$和實(shí)數(shù)λ,使$\overrightarrow{a}$=λ$\overrightarrow$+μ$\overrightarrow{c}$;
④給定正數(shù)λ和μ,總存在單位向量$\overrightarrow$和單位向量$\overrightarrow{c}$,使$\overrightarrow{a}$=λ$\overrightarrow$+μ$\overrightarrow{c}$.
上述命題中的向量$\overrightarrow$,$\overrightarrow{c}$和$\overrightarrow{a}$在同一平面內(nèi)且兩兩不共線,則真命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知下列四個(gè)命題:
(1)若ax2-ax+1>0在x∈R上恒成立,則0<a<4;
(2)銳角三角形△ABC中,A=$\frac{π}{3}$,則$\frac{1}{2}$<sinB<1;
(3)已知k∈R,直線y-kx-1=0與橢圓$\frac{x^2}{5}+\frac{y^2}{m}=1({m>0})$恒有公共點(diǎn),則m∈[1,5);
(4)定義在R上的函數(shù)f(x)滿足f(x+y)=f(x)+f(y),當(dāng)x?0時(shí),f(x)>0,則函數(shù)f(x)在[a,b]上有最小值f(b).
其中的真命題是(2)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.給出以下結(jié)論,其中錯(cuò)誤的有③④
①正方形的直觀圖可能為平行四邊形
②在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{BC}$>0,則△ABC為鈍角三角形
③已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,則an=2n(n∈N*
④若關(guān)于x的不等式x2-2ax+1≤0有解,則a的取值范圍為(-∞,-1)∪(1,+∞)
⑤函數(shù)y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$ (x∈R)的最小值為$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,P為△ABC所在平面外一點(diǎn),PA⊥平面ABC,∠ABC=90°,AE⊥PB于E,AF⊥PC于F,求證:
(1)BC⊥平面PAB;
(2)平面AEF⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.以下命題正確命題的個(gè)數(shù)為( 。
(1)化極坐標(biāo)方程ρ2cosθ-ρ=0為直角坐標(biāo)方程為x2+y2=0或y=1
(2)集合A={x||x+1|<1},B={x|y=-$\sqrt{2x-{x^2}}$},則A⊆B
(3)若函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)可導(dǎo),且x0∈(a,b),則$\underset{lim}{h→0}\frac{f({x}_{0}+h)-f({x}_{0}-h)}{h}$的值為2f′(x0)(4)若關(guān)于x的不等式|ax-2|+|ax-a|≥2(其中a>0)的解集為R,則實(shí)數(shù)a≥4(5)將點(diǎn)P(-2,2)變換為P′(-6,1)的伸縮變換公式為$\left\{\begin{array}{l}{x′=3x}\\{y′=2y}\end{array}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知圓M的圓心在直線x+y+1=0上,且與y軸交于兩點(diǎn)A(0,-1),B(0,-3)
(Ⅰ)求圓M的方程;
(Ⅱ)已知直線2ax-by-2=0(a>0,b>0)被圓M截得的弦長(zhǎng)為2$\sqrt{2}$,求a+b3的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=(-x2+2x)ex,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知f(x)=$\frac{{a}^{x}-{a}^{-x}}{{a}^{x}+{a}^{-x}}$(0<a<1)
(1)證明:f(x)定義域上的減函數(shù);
(2)求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案