【題目】如圖,已知橢圓
的左、右焦點(diǎn)分別為
、
,
,
是
軸的正半軸上一點(diǎn),
交橢圓于
,且
,
的內(nèi)切圓
半徑為1.
![]()
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若
點(diǎn)為圓
上一點(diǎn),求
的取值范圍.
【答案】(1)
(2)![]()
【解析】
(1)設(shè)內(nèi)切圓與三角形各邊的切點(diǎn),再由直角三角形
中,由勾股定理可得橢圓的
值,再由
可得
的值,由
,
,
之間的關(guān)系求出橢圓的方程;
(2)由(1)得直線
的方程,由圓心到直線的距離為半徑1,求出圓
的圓心坐標(biāo),可得圓的方程,設(shè)
的參數(shù)坐標(biāo),可得數(shù)量積的表達(dá)式,進(jìn)而求出其取值范圍.
解:(1)設(shè)
的內(nèi)切圓
切
,
,
于
,
,
連接
,
,
因?yàn)?/span>
,因?yàn)?/span>
,所以四邊形
為正方形,所以
,
設(shè)
,
,由
,且
,有
,則
,
,
由
得![]()
,有
,
故
,即
,
,
所以橢圓的方程的標(biāo)準(zhǔn)方程:
;
![]()
(2)設(shè)點(diǎn)
,其到直線
的距離為1,
有
,解得
或
(舍),即
.
故圓
的方程為
,
設(shè)
,
由
,
,
所以
,![]()
有![]()
![]()
因?yàn)?/span>![]()
所以![]()
故
為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】干支歷法是上古文明的產(chǎn)物,又稱節(jié)氣歷或中國(guó)陽(yáng)歷,是一部深?yuàn)W的歷法.它是用60組各不相同的天干地支標(biāo)記年月日時(shí)的歷法.具體的算法如下:先用年份的尾數(shù)查出天干,如2013年3為癸;再用2013年除以12余數(shù)為9,9為巳.那么2013年就是癸巳年了,
天干 | 甲 | 乙 | 丙 | 丁 | 戊 | 己 | 庚 | 辛 | 壬 | 癸 | ||
4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3 | |||
地支 | 子 | 丑 | 寅 | 卯 | 辰 | 巳 | 午 | 未 | 申 | 酉 | 戌 | 亥 |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 |
2020年高三應(yīng)屆畢業(yè)生李東是壬午年出生,李東的父親比他大25歲.問(wèn)李東的父親是哪一年出生( )
A.甲子B.乙丑C.丁巳D.丙卯
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,D是△ABC中,邊BC的中點(diǎn),K為AC與△ABD的外接圓O的交點(diǎn),EK平行于AB且與圓O交于E,若AD=DE,求證:
.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
.
(1)討論
時(shí),
的單調(diào)性、極值;
(2)求證:在(1)的條件下,
;
(3)是否存在實(shí)數(shù)a,使
的最小值是3,如果存在,求出a的值;若不存在,
請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)邊分別為a,b,c.若
,c=6,則△ABC外接圓的半徑大小是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次比賽中,某隊(duì)的六名隊(duì)員均獲得獎(jiǎng)牌,共獲得4枚金牌2枚銀牌,在頒獎(jiǎng)晚會(huì)上,這六名隊(duì)員與1名領(lǐng)隊(duì)排成一排合影,若兩名銀牌獲得者需站在領(lǐng)隊(duì)的同側(cè),則不同的排法共有______種.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F(0,1)為平面上一點(diǎn),H為直線l:y=﹣1上任意一點(diǎn),過(guò)點(diǎn)H作直線l的垂線m,設(shè)線段FH的中垂線與直線m交于點(diǎn)P,記點(diǎn)P的軌跡為Γ.
(1)求軌跡Γ的方程;
(2)過(guò)點(diǎn)F作互相垂直的直線AB與CD,其中直線AB與軌跡Γ交于點(diǎn)AB,直線CD與軌跡Γ交于點(diǎn)CD,設(shè)點(diǎn)M,N分別是AB和CD的中點(diǎn).
①問(wèn)直線MN是否恒過(guò)定點(diǎn),如果經(jīng)過(guò)定點(diǎn),求出該定點(diǎn),否則說(shuō)明理由;
②求△FMN的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱柱
中,底面
是等腰梯形,
,頂點(diǎn)
在底面
內(nèi)的射影恰為點(diǎn)
.
![]()
(1)求證:
平面
;
(2)若直線
與底面
所成的角為
,求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體ABCDE中,
平面ABC,
,
,F是線段AD的中點(diǎn),
.
![]()
(1)求證:
;
(2)若
,求三棱錐
的體積.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com