設a>0,函數(shù)f(x)=x2+a|lnx-1|.
(Ⅰ)當a=1時,求曲線y=f(x)在x=1出的切線方程;
(II)當x∈[1,+∞)時,求函數(shù)f(x)的最小值.
解:(Ⅰ)當a=1時,
![]()
令x=1得f(1)=2,f ′(1)=1,所以切點為(1,2),切線的斜率為1,
所以曲線y=f(x)在x=1處的切線方程為:x-y+1=0. …………4分
(Ⅱ)①當x≥e時,![]()
a>0,![]()
恒成立.
f(x)在[e,+∞)上增函數(shù).
故當x=e時,ymin=f(e)=e2
②當1≤x<e時,![]()
(。┊
,即0<a≤2時,
在
時為正數(shù),所以f(x)在區(qū)間[1,e)上為增函數(shù).故當x=1時,ymin=1+a,且此時f(1)<f(e).
(ⅱ)當1<
<e,即2<a<2e2時,
在
時為負數(shù),在
時為正數(shù).所以f(x)在區(qū)間
上為減函數(shù),在
上為增函數(shù)
故當
時,
,且此時![]()
(ⅲ)當
≥e;即a≥2e2時,
在
時為負數(shù),所以f(x)在區(qū)間[1,e]上為減函數(shù),故當x=e時,ymin=f(e)=e2.
綜上所述,當a≥2e2時,f(x)在x≥e時和1≤x≤e時的最小值都是e2.所以此時f(x)的最小值為f(e)= e2;
當2<a<2e2時,f(x)在x≥e的最小值為f(e)=
e2,f(x)在1≤x≤e的最小值為
,而
,所以此時f(x)的最小值為
.
當0<a≤2時,在x≥e時最小值為e2,在1≤x<e時的最小值為f(1)=1+a,而f(1)<f(e),所以此時f(x)的最小值為f(1)=1+a
所以函數(shù)y=f(x)的最小值為
………………………12分
科目:高中數(shù)學 來源: 題型:
(07年西城區(qū)抽樣測試理)(14分)設a>0,函數(shù)
.
(I)若
在區(qū)間
上是增函數(shù),求a的取值范圍;
(II)求
在區(qū)間
上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設
=
(a>0)為奇函數(shù),且
min=
,數(shù)列{an}與{bn}滿足 如下關系:a1=2,
,
.
(1)求f(x)的解析表達式;
(2) 證明:當n∈N+時, 有bn![]()
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設
=
(a>0)為奇函數(shù),且
min=
,數(shù)列{an}與{bn}滿足 如下關系:a1=2,
,
.
(1)求f(x)的解析表達式; (2) 證明:當n∈N+時, 有bn![]()
.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com