欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
14.在圓(x-1)2+(y-3)2=25內過點(1,0)的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積為(  )
A.40B.20C.80D.10

分析 由圓的方程找出圓心坐標和半徑r,連接圓心與點(1,0),利用垂徑定理的逆定理最長的弦為過(1,0)的直徑,最短的弦為與直徑垂直的弦,由圓心與(1,0)的距離d,即弦心距及圓的半徑r,勾股定理及垂徑定理求出最短的弦長,再由直徑與最短的弦長垂直,利用直徑與最短弦長乘積的一半即可求出四邊形ABCD的面積.

解答 解:由圓的方程(x-1)2+(y-3)2=25,得到圓心坐標為(1,3),半徑r=5,
∵過(1,0)最長的弦為直徑,即AC=10,且(1,0)與(1,3)的距離d=3,
∴最短的弦長BD=2$\sqrt{25-9}$=8,
又AC⊥BD,
則四邊形ABCD的面積S=$\frac{1}{2}$×10×8=40.
故選A.

點評 此題考查了直線與圓相交的性質,涉及的知識有:圓的標準方程,兩點間的距離公式,垂徑定理,勾股定理,以及對角線垂直的四邊形面積求法,其中根據題意得出最長的弦長與最短的弦長是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

4.已知函數f(x)=-x2+2|x|.
(Ⅰ)判斷并證明函數的奇偶性;
(Ⅱ)寫出函數f(x)的單調區(qū)間(不需證明);
(Ⅲ)求f(x)在[-3,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.偶函數f(x) 在(0,+∞)上遞增,若f(2)=0,則$\frac{{f(x)+f({-x})}}{x}$<0的解集是( 。
A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(0,2)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.如圖,在正三棱柱ABC-A1B1C1中,點D是棱AB的中點,BC=2,AA1=2$\sqrt{3}$.
(1)求證:BC1∥平面A1DC;
(2)求二面角D-A1C-A的平面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.已知函數f(x)=2x+$\frac{a}{2^x}$是偶函數.
(1)求不等式f(x)<$\frac{5}{2}$的解集;
(2)對任意x∈R,不等式f(2x)≥mf(x)-18恒成立,求實數m的最大值及此時x的取值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.已知函數f(x)=|x|(2-x),關于x的方程f(x)=m(m∈R)有三個不同的實數解x1,x2,x3,則x1x2x3的取值范圍為(1-$\sqrt{2}$,0).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.下列函數中,既是奇函數,又在區(qū)間(0,+∞)上為增函數的是( 。
A.f(x)=x2-xB.f(x)=$\frac{1}{x}$+xC.f(x)=2x+$\frac{1}{{2}^{x}}$D.f(x)=x|x|

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知全集U=R,集合A={x|2x+a>0},B={x|x>3或x<-1}.
(1)當a=2時,求集合A∩B;
(2)若(∁UA)∪B=R,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.設實數x,y滿足約束條件$\left\{\begin{array}{l}{x-y-2≤0}\\{x+y-2≤0}\\{x≥-2}\end{array}\right.$,則x2+(y+4)2的取值范圍是( 。
A.[2,68]B.[4,68]C.[2,2$\sqrt{17}$]D.[$\sqrt{2}$,2$\sqrt{17}$]

查看答案和解析>>

同步練習冊答案