【題目】在
中,
且
,
邊上的中線長(zhǎng)為
,則
的面積是________.
【答案】![]()
【解析】
根據(jù)題意,將
變形可得
,又由
,則
可以變形為
,分析可得
的值,進(jìn)而可得
的值,分析可得,
為等腰三角形,設(shè)
為
中點(diǎn),AD=
,設(shè)
,在△ACD中,由余弦定理可得cosC=
,計(jì)算可得
的值,由三角形面積公式計(jì)算可得答案.
根據(jù)題意,
中,
,則有
sinB=
,變形可得sinB=1+cosC,
則有cosC=sinB﹣1<0,則C為鈍角,B為銳角.
又由A=
,得B+C=
,則sinB=1+cosCsin(
﹣C)=1+cosCcos(C+
)=﹣1,
又C為鈍角,所以C=
,B=
﹣C=
,
則在
中,A=B=
,則有AC=BC,即
為等腰三角形,
設(shè)D為BC中點(diǎn),則AD=
,設(shè)AC=x,則有cosC=
,解得x=2,即AC=BC=2.
則S△ABC=
×AC×BC×sinC=
×2×2×sin
=
.
故答案為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知橢圓
的左頂點(diǎn)為
,右焦點(diǎn)為
,
為橢圓
上兩點(diǎn),圓
.
(1)若
軸,且滿足直線
與圓
相切,求圓
的方程;
(2)若圓
的半徑為
,點(diǎn)
滿足
,求直線
被圓
截得弦長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三共有1000位學(xué)生,為了分析某次的數(shù)學(xué)考試成績(jī),采取隨機(jī)抽樣的方法抽取了200位高三學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)分析得到如圖所示頻率分布直方圖:
![]()
(1)計(jì)算這些學(xué)生成績(jī)的平均值
及樣本方差
(同組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替);
(2)由頻率分布直方圖認(rèn)為,這次成績(jī)X近似服從正態(tài)分布
,其中μ近似為樣本平均數(shù)
,
近似為樣本方差
.
(i)求
;
(ii)從高三學(xué)生中抽取10位學(xué)生進(jìn)行面批,記
表示這10位學(xué)生成績(jī)?cè)?/span>
的人數(shù),利用(i)的結(jié)果,求數(shù)學(xué)期望
.
附:
;
若
,則
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體
中,平面
⊥平面
,
,
,DE
AC,AD=BD=1.
(Ⅰ)求AB的長(zhǎng);
(Ⅱ)已知
,求點(diǎn)E到平面BCD的距離的最大值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,平面
平面
,
,
是等邊三角形,已知
,
.
![]()
(1)設(shè)
是
上的一點(diǎn),證明:平面
平面
;
(2)求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)舉辦“父母養(yǎng)育我,我報(bào)父母恩”的活動(dòng),對(duì)六個(gè)年級(jí)(一年級(jí)到六年級(jí)的年級(jí)代碼分別為1,2…,6)的學(xué)生給父母洗腳的百分比y%進(jìn)行了調(diào)查統(tǒng)計(jì),繪制得到下面的散點(diǎn)圖.
![]()
(1)由散點(diǎn)圖看出,可用線性回歸模型擬合y與x的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;
(2)建立y關(guān)于x的回歸方程,并據(jù)此預(yù)計(jì)該校學(xué)生升入中學(xué)的第一年(年級(jí)代碼為7)給父母洗腳的百分比.
附注:參考數(shù)據(jù):
參考公式:相關(guān)系數(shù)
,若r>0.95,則y與x的線性相關(guān)程度相當(dāng)高,可用線性回歸模型擬合y與x的關(guān)系.回歸方程
中斜率與截距的最小二乘估計(jì)公式分別為
=
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠預(yù)購(gòu)軟件服務(wù),有如下兩種方案:
方案一:軟件服務(wù)公司每日收取工廠60元,對(duì)于提供的軟件服務(wù)每次10元;
方案二:軟件服務(wù)公司每日收取工廠200元,若每日軟件服務(wù)不超過15次,不另外收費(fèi),若超過15次,超過部分的軟件服務(wù)每次收費(fèi)標(biāo)準(zhǔn)為20元.
(1)設(shè)日收費(fèi)為
元,每天軟件服務(wù)的次數(shù)為
,試寫出兩種方案中
與
的函數(shù)關(guān)系式;
(2)該工廠對(duì)過去100天的軟件服務(wù)的次數(shù)進(jìn)行了統(tǒng)計(jì),得到如圖所示的條形圖,依據(jù)該統(tǒng)計(jì)數(shù)據(jù),把頻率視為概率,從節(jié)約成本的角度考慮,從兩個(gè)方案中選擇一個(gè),哪個(gè)方案更合適?請(qǐng)說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠銷售部以箱為單位銷售某種零件,每箱的定價(jià)為200元,低于100箱按原價(jià)銷售;不低于100箱通過雙方議價(jià),買方能以優(yōu)惠
成交的概率為0.6,以優(yōu)惠
成交的概率為0.4.
(1)甲、乙兩單位都要在該廠購(gòu)買150箱這種零件,兩單位各自達(dá)成的成交價(jià)相互獨(dú)立,求甲單位優(yōu)惠比例不低于乙單位優(yōu)惠比例的概率;
(2)某單位需要這種零件650箱,求購(gòu)買總價(jià)
的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD所在平面垂直于直角梯形ABPE所在平面,EP
,BP=2,AD=AE=1,AE⊥EP,AE∥BP,G,F分別是BP,BC的中點(diǎn).
![]()
(1)求證:平面AFG∥平面PCE;
(2)求四棱錐D﹣ABPE的體積與三棱錐P﹣BCD的體積之比.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com