【題目】新能源汽車(chē)的春天來(lái)了!2018年3月5日上午,李克強(qiáng)總理做政府工作報(bào)告時(shí)表示,將新能源汽車(chē)車(chē)輛購(gòu)置稅優(yōu)惠政策再延長(zhǎng)三年,自2018年1月1日至2020年12月31日,對(duì)購(gòu)置的新能源汽車(chē)免征車(chē)輛購(gòu)置稅.某人計(jì)劃于2018年5月購(gòu)買(mǎi)一輛某品牌新能源汽車(chē),他從當(dāng)?shù)卦撈放其N(xiāo)售網(wǎng)站了解了近五個(gè)月的實(shí)際銷(xiāo)量如下表:
月份 | 2017.12 | 2018.01 | 2018.02 | 2018.03 | 2018.04 |
月份編號(hào) | 1 | 2 | 3 | 4 | 5 |
銷(xiāo)量(萬(wàn)量) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)經(jīng)分析,可用線性回歸模型擬合當(dāng)?shù)卦撈放菩履茉雌?chē)實(shí)際銷(xiāo)量
(萬(wàn)輛)與月份編號(hào)
之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求
關(guān)于
的線性回歸方程
,并預(yù)測(cè)2018年5月份當(dāng)?shù)卦撈放菩履茉雌?chē)的銷(xiāo)量;
(2)2018年6月12日,中央財(cái)政和地方財(cái)政將根據(jù)新能源汽車(chē)的最大續(xù)航里程(新能源汽車(chē)的最大續(xù)航里程是指理論上新能源汽車(chē)所裝的燃料或電池所能夠提供給車(chē)跑的最遠(yuǎn)里程)對(duì)購(gòu)車(chē)補(bǔ)貼進(jìn)行新一輪調(diào)整.已知某地?cái)M購(gòu)買(mǎi)新能源汽車(chē)的消費(fèi)群體十分龐大,某調(diào)研機(jī)構(gòu)對(duì)其中的200名消費(fèi)者的購(gòu)車(chē)補(bǔ)貼金額的心理預(yù)期值進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:
補(bǔ)貼金額預(yù)期值區(qū)間(萬(wàn)元) |
|
|
|
|
|
|
頻數(shù) | 20 | 60 | 60 | 30 | 20 | 10 |
(i)求這200位擬購(gòu)買(mǎi)新能源汽車(chē)的消費(fèi)者對(duì)補(bǔ)貼金額的心理預(yù)期值
的方差
及中位數(shù)的估計(jì)值(同一區(qū)間的預(yù)期值可用該區(qū)間的中點(diǎn)值代替,估計(jì)值精確到0.1);
(ii)將頻率視為概率,現(xiàn)用隨機(jī)抽樣方法從該地區(qū)擬購(gòu)買(mǎi)新能源汽車(chē)的所有消費(fèi)者中隨機(jī)抽取3人,記被抽取的3人中對(duì)補(bǔ)貼金額的心理預(yù)期值不低于3萬(wàn)元的人數(shù)為
,求
的分布列及數(shù)學(xué)期望
.
附:①回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:
,
;②
.
【答案】(1)
,2萬(wàn)輛. (2) (i)
=1.7,中位數(shù)3.3萬(wàn)元.(ii)分布列見(jiàn)解析,數(shù)學(xué)期望為1.8
【解析】
(1)由題意利用最小二乘法能求出y關(guān)于t的線性回歸方程
,并預(yù)測(cè)2018年5月份當(dāng)?shù)卦撈放菩履茉雌?chē)的銷(xiāo)量.
(2)(i)由題意能求出這200位擬購(gòu)買(mǎi)新能源汽車(chē)的消費(fèi)者對(duì)補(bǔ)貼金額的心里預(yù)期值
的平均值
和樣本方差s2及中位數(shù)的估計(jì)值.
(ii)根據(jù)給定的頻數(shù)表可知,任意抽取1名擬購(gòu)買(mǎi)新能源汽車(chē)的消費(fèi)者,對(duì)補(bǔ)貼金額的心理預(yù)期值不低于3萬(wàn)元的概率為
,由題意可知ξ~B(3,
),ξ的所有可能取值為0,1,2,3,由此能求出ξ的分布列及數(shù)學(xué)期望E(ξ).
(1)由表格數(shù)據(jù)可知,
,
,
,
,
,
關(guān)于
的線性回歸方程
,
根據(jù)
的含義,2018年5月時(shí),
,代入可得
(萬(wàn)輛),即2018年5月銷(xiāo)量的預(yù)測(cè)值為2萬(wàn)輛.
(2)(i)由表中數(shù)據(jù)可知各組頻率依次為0.1,0.3,0.3,0.15,0.1,0.05,
平均值
,
![]()
.
,
中位數(shù)在區(qū)間
內(nèi),設(shè)中位數(shù)為
,
有
,
解得,
,
中位數(shù)
萬(wàn)元.
(ii)由(i)可知,心理預(yù)期值不低于3萬(wàn)元的概率為
,
則
,
的可能取值為0,1,2,3.
![]()
,
,
,
,
的分布列為
| 0 | 1 | 2 | 3 |
| 0.064 | 0.288 | 0.432 | 0.216 |
故![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線
的參數(shù)方程為
(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是
.
(1)寫(xiě)出直線
的極坐標(biāo)方程與曲線
的直角坐標(biāo)方程;
(2)若點(diǎn)
是曲線
上的動(dòng)點(diǎn),求
到直線
距離的最小值,并求出此時(shí)
點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
經(jīng)過(guò)點(diǎn)
,且離心率為
.
(1)求橢圓
的方程;
(2)若點(diǎn)
、
在橢圓
上,且四邊形
是矩形,求矩形
的面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
有兩個(gè)零點(diǎn)
,且![]()
(1)求
的取值范圍;
(2)證明:
隨著
的增大而減。
(3)證明:
隨著
的增大而減小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2)當(dāng)
時(shí),記函數(shù)
在區(qū)間
的最大值為
.最小值為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程及直線
的直角坐標(biāo)方程;
(2)求曲線
上的點(diǎn)到直線
的距離的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系
中,已知橢圓
過(guò)點(diǎn)
,
,
分別為橢圓
的右下頂點(diǎn),且
.
![]()
(1)求橢圓
的方程;
(2)設(shè)點(diǎn)
在橢圓
內(nèi),滿足直線
,
的斜率乘積為
,且直線
,
分別交橢圓
于點(diǎn)
,
.
①若
,
關(guān)于
軸對(duì)稱,求直線
的斜率;
②若
和
的面積分別為
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)進(jìn)行疾病普查,為此要檢驗(yàn)每一人的血液,如果當(dāng)?shù)赜?/span>
人,若逐個(gè)檢驗(yàn)就需要檢驗(yàn)
次,為了減少檢驗(yàn)的工作量,我們把受檢驗(yàn)者分組,假設(shè)每組有
個(gè)人,把這個(gè)
個(gè)人的血液混合在一起檢驗(yàn),若檢驗(yàn)結(jié)果為陰性,這
個(gè)人的血液全為陰性,因而這
個(gè)人只要檢驗(yàn)一次就夠了,如果為陽(yáng)性,為了明確這個(gè)
個(gè)人中究竟是哪幾個(gè)人為陽(yáng)性,就要對(duì)這
個(gè)人再逐個(gè)進(jìn)行檢驗(yàn),這時(shí)
個(gè)人的檢驗(yàn)次數(shù)為
次.假設(shè)在接受檢驗(yàn)的人群中,每個(gè)人的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性是獨(dú)立的,且每個(gè)人是陽(yáng)性結(jié)果的概率為
.
(Ⅰ)為熟悉檢驗(yàn)流程,先對(duì)3個(gè)人進(jìn)行逐個(gè)檢驗(yàn),若
,求3人中恰好有1人檢測(cè)結(jié)果為陽(yáng)性的概率;
(Ⅱ)設(shè)
為
個(gè)人一組混合檢驗(yàn)時(shí)每個(gè)人的血需要檢驗(yàn)的次數(shù).
①當(dāng)
,
時(shí),求
的分布列;
②是運(yùn)用統(tǒng)計(jì)概率的相關(guān)知識(shí),求當(dāng)
和
滿足什么關(guān)系時(shí),用分組的辦法能減少檢驗(yàn)次數(shù).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com