【題目】如圖,在四棱錐P﹣ABCD中,四邊形ABCD是菱形,
,BD=2.
![]()
(1)若點(diǎn)E,F分別為線段PD,BC上的中點(diǎn),求證:EF∥平面PAB;
(2)若平面PBD⊥平面ABCD,且PD⊥PB,PD=PB,求平面PAB與平面PBC所成的銳二面角的余弦值.
【答案】(1)見解析(2)
.
【解析】
(1)取AP的中點(diǎn)為H,連接EH,HB,證明四邊形BFEH為平行四邊形得到答案.
(2)過A作AN⊥PB于點(diǎn)N,連接NC,AC,BD,設(shè)AC交BD于點(diǎn)O,確定則∠ANC 為二面角A﹣PB﹣C 的平面角,計(jì)算得到答案.
(1)取AP的中點(diǎn)為H,連接EH,HB;
![]()
由E,H分別為PD,PA的中點(diǎn),則EH∥AD且
;
又F為BC的中點(diǎn),則BF∥AD且
;
所以EH∥BF且EH=BF,則四邊形BFEH為平行四邊形;
所以EF∥BH,又HB
平面PAB;
所以EF∥平面PAB;
(2)過A作AN⊥PB于點(diǎn)N,連接NC,AC,BD,設(shè)AC交BD于點(diǎn)O,
![]()
在△PBD中O為AC的中點(diǎn),PD=PB,則PO⊥BD;
又平面PBD⊥平面ABCD,所以PO⊥平面ABCD;
在△PBD中,PD⊥PB,BD=2.則PD=PB
;
由題意有PA=PC
,AO=2,
,
在等腰三角形APB中,
;
由△PAB≌△PCB,則CN⊥PB;CN=AN
在△ACN中,
;
故平面PAB與平面PBC所成的銳二面角的余弦值為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)分別為
、
,且兩焦點(diǎn)的距離為
,橢圓
上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形的周長為
.
(1)求橢圓的方程;
(2)過點(diǎn)
的直線交橢圓
于
、
兩點(diǎn),若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知如圖所示,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E、F分別為PC的三等分點(diǎn).
![]()
(1)證明:AF∥平面EBD;
(2)已知AP=AD=1,AB=2,求二面角E-BD-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,曲線C1的普通方程為
,曲線C2參數(shù)方程為
為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
.
(1)求C1的參數(shù)方程和
的直角坐標(biāo)方程;
(2)已知P是C2上參數(shù)
對應(yīng)的點(diǎn),Q為C1上的點(diǎn),求PQ中點(diǎn)M到直線
的距離取得最大值時,點(diǎn)Q的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)關(guān)于
的不等式
的解集為
,求
的值;
(2)若函數(shù)
的圖象與
軸圍成圖形的面積不小于50,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校從參加高二年級期末考試的學(xué)生中抽出一些學(xué)生,并統(tǒng)計(jì)了他們的數(shù)學(xué)成績(成績均為整數(shù)且滿分為100分),所得數(shù)據(jù)整理后,列出了如下頻率分布表.
分組 | 頻數(shù) | 頻率 |
[40,50) | A | 0.04 |
[50,60) | 4 | 0.08 |
[60,70) | 20 | 0.40 |
[70,80) | 15 | 0.30 |
[80,90) | 7 | B |
[90,100] | 2 | 0.04 |
合計(jì) | C | 1 |
![]()
(1)在給出的樣本頻率分布表中,求A,B,C的值;
(2)補(bǔ)全頻率分布直方圖,并利用它估計(jì)全體高二年級學(xué)生期末數(shù)學(xué)成績的眾數(shù)、中位數(shù);
(3)現(xiàn)從分?jǐn)?shù)在[80,90),[90,100]的9名同學(xué)中隨機(jī)抽取兩名同學(xué),求被抽取的兩名學(xué)生分?jǐn)?shù)均不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,
.
(1)若曲線
在點(diǎn)
處的切線與
軸平行,求
;
(2)當(dāng)
時,函數(shù)
的圖象恒在
軸上方,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,試判斷函數(shù)
的零點(diǎn)個數(shù);
(2)若函數(shù)
在
上為增函數(shù),求整數(shù)
的最大值.
(可能要用到的數(shù)據(jù):
,
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在菱形
中,
,
為線段
的中點(diǎn)(如圖1).將
沿
折起到
的位置,使得平面
平面
,
為線段
的中點(diǎn)(如圖2).
![]()
(Ⅰ)求證:
;
(Ⅱ)求證:
平面
;
(Ⅲ)當(dāng)四棱錐
的體積為
時,求
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com