已知中心在原點(diǎn)的橢圓C:
的一個(gè)焦點(diǎn)為![]()
為橢圓C上一點(diǎn),△MOF2的面積為
.
(1)求橢圓C的方程;
(2)是否存在平行于OM的直線l,使得l與橢圓C相交于A、B兩點(diǎn),且以線段AB為直徑的圓恰好過(guò)原點(diǎn)?若存在,求出直線l的方程;若不存在,說(shuō)明理由.
(1)
,(2)![]()
解析試題分析:(1)求橢圓標(biāo)準(zhǔn)方程一般方法為待定系數(shù)法,因?yàn)镃=3,則橢圓C的方程為
,又
,即點(diǎn)M的坐標(biāo)為(1,4),
或
(舍去)
橢圓方程為
,(2)存在性問(wèn)題,從假設(shè)存在出發(fā). 假定存在符合題意的直線l與橢圓C相交于
,因?yàn)橐訟B為直徑的圓過(guò)原點(diǎn),
,設(shè)直線l
方程為
.由
得![]()
![]()
,解得
,滿足
,因此直線l的方程為
.
⑴C=3,則橢圓C的方程為![]()
又![]()
點(diǎn)M的坐標(biāo)為(1,4)
或
(舍去)
橢圓方程為
7分
⑵假定存在符合題意的直線l與橢圓C相交于
,其方程為
.
由
,
,且
. 11分
因?yàn)橐訟B為直徑的圓過(guò)原點(diǎn),
![]()
.
,代入
.
存在這的直線l,所在直線的方程為
. 15分
考點(diǎn):直線與橢圓位置關(guān)系
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓
的長(zhǎng)軸長(zhǎng)為
,點(diǎn)
、
、
為橢圓上的三個(gè)點(diǎn),
為橢圓的右端點(diǎn),
過(guò)中心
,且
,
.![]()
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)
、
是橢圓上位于直線
同側(cè)的兩個(gè)動(dòng)點(diǎn)(異于
、
),且滿足
,試討論直線
與直線
斜率之間的關(guān)系,并求證直線
的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,F(xiàn)是拋物線C:x2=2py(p>0)的焦點(diǎn),M是拋物線C上位于第一象限內(nèi)的任意一點(diǎn),過(guò)M,F(xiàn),O三點(diǎn)的圓的圓心為Q,點(diǎn)Q到拋物線C的準(zhǔn)線的距離為
.
(1)求拋物線C的方程;
(2)是否存在點(diǎn)M,使得直線MQ與拋物線C相切于點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
給定橢圓
.稱圓心在原點(diǎn)O,半徑為
的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為
,其短軸上的一個(gè)端點(diǎn)到F的距離為
.
(1)求橢圓C的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過(guò)動(dòng)點(diǎn)P作直線
,使得
與橢圓C都只有一個(gè)交點(diǎn),試判斷
是否垂直?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系
中,已知?jiǎng)狱c(diǎn)
到點(diǎn)
的距離為
,到
軸的距離為
,且
.
(1)求點(diǎn)
的軌跡
的方程;
(2) 若直線
斜率為1且過(guò)點(diǎn)
,其與軌跡
交于點(diǎn)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系
中,如圖,已知橢圓E:
的左、右頂點(diǎn)分別為
、
,上、下頂點(diǎn)分別為
、
.設(shè)直線
的傾斜角的正弦值為
,圓
與以線段
為直徑的圓關(guān)于直線
對(duì)稱.![]()
(1)求橢圓E的離心率;
(2)判斷直線
與圓
的位置關(guān)系,并說(shuō)明理由;
(3)若圓
的面積為
,求圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,橢圓
的離心率為
,過(guò)橢圓右焦點(diǎn)
作兩條互相垂直的弦
與
.當(dāng)直線
斜率為0時(shí),
.![]()
(1)求橢圓的方程;
(2)求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知雙曲線
的左、右頂點(diǎn)分別為A1、A2,動(dòng)直線l:y=kx+m與圓
相切,且與雙曲線左、右兩支的交點(diǎn)分別為
.![]()
(1)求k的取值范圍,并求
的最小值;
(2)記直線
的斜率為
,直線
的斜率為
,那么
是定值嗎?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知平面上的動(dòng)點(diǎn)P(x,y)及兩個(gè)定點(diǎn)A(-2,0),B(2,0),直線PA,PB的斜率分別為K1,K2且K1K2=-![]()
(1).求動(dòng)點(diǎn)P的軌跡C方程;
(2).設(shè)直線L:y=kx+m與曲線C交于不同兩點(diǎn),M,N,當(dāng)OM⊥ON時(shí),求O點(diǎn)到直線L的距離(O為坐標(biāo)原點(diǎn))
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com