【題目】在棱長為a的正方體OABC-O1A1B1C1中,E,F分別是AB,BC上的動點,且AE=BF,求證:A1F⊥C1E.
【答案】見解析
【解析】
以O(shè)為坐標(biāo)原點建立如圖所示的空間直角坐標(biāo)系,則A1(a,0,a),C1(0,a,a).
設(shè)AE=BF=x,則E(a,x,0),F(a-x,a,0),所以
=(-x,a,-a),
=(a,x-a,-a).
則計算
即可.
證明:以O(shè)為坐標(biāo)原點建立如圖所示的空間直角坐標(biāo)系,則A1(a,0,a),C1(0,a,a).
![]()
設(shè)AE=BF=x,則E(a,x,0),F(a-x,a,0),所以
=(-x,a,-a),
=(a,x-a,-a).
因為
=(-x,a,-a)·(a,x-a,-a)=-ax+ax-a2+a2=0,所以
,即A1F⊥C1E.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點F1(﹣c,0),F(xiàn)2(c,0)分別是橢圓C:
=1(a>1)的左、右焦點,P為橢圓C上任意一點,且
的最小值為0. ![]()
(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且F1M⊥l,F(xiàn)2N⊥l,求四邊形F1MNF2面積S的最大值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
x3﹣
ax2 , a∈R,
(1)當(dāng)a=2時,求曲線y=f(x)在點(3,f(3))處的切線方程;
(2)設(shè)函數(shù)g(x)=f(x)+(x﹣a)cosx﹣sinx,討論g(x)的單調(diào)性并判斷有無極值,有極值時求出極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD—A1B1C1D1中,若E為A1C1中點,則直線CE垂直于( )
A. AC B. BD C. A1D D. A1A
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),…[80,90],并整理得到如下頻率分布直方圖: ![]()
(Ⅰ)從總體的400名學(xué)生中隨機抽取一人,估計其分?jǐn)?shù)小于70的概率;
(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(1,0,0),B(0,1,0),C(0,0,2).
(1)若
,求點D的坐標(biāo);
(2)問是否存在實數(shù)α,β,使得
=α
+β
成立?若存在,求出α,β的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點.
(Ⅰ)證明:CE∥平面PAB;
(Ⅱ)求直線CE與平面PBC所成角的正弦值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
經(jīng)過點
(
,
),且兩個焦點
,
的坐標(biāo)依次為(
1,0)和(1,0).
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)
,
是橢圓
上的兩個動點,
為坐標(biāo)原點,直線
的斜率為
,直線
的斜率為
,求當(dāng)
為何值時,直線
與以原點為圓心的定圓相切,并寫出此定圓的標(biāo)準(zhǔn)方程.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com