設(shè)橢圓
的左焦點為
,離心率為
,過點
且與
軸垂直的直線被橢圓截得的線段長為![]()
(1)求橢圓方程;
(2)過點
的直線
與橢圓交于不同的兩點
,當
面積最大時,求![]()
(1)
;(2)
.
【解析】
試題分析:(1)由離心率和點
.用待定系數(shù)法求出橢圓的方程.(2)利用點到直線的距離公式求出高及弦長公式求出弦長.分式形式的最值的求法要記牢.本題是對橢圓的基礎(chǔ)知識的測試.
試題解析:(1)由題意可得
,
,又
,解得
,
所以橢圓方程為![]()
(2)根據(jù)題意可知,直線
的斜率存在,故設(shè)直線
的方程為
,設(shè)
,
由方程組
消去
得關(guān)于
的方程![]()
由直線
與橢圓相交于
兩點,則有
,即![]()
得:
由根與系數(shù)的關(guān)系得![]()
故
又因為原點
到直線
的距離
,故
的面積![]()
令
則
,所以
當且僅當
時等號成立,
即
時,
.
考點:1.待定系數(shù)法求橢圓方程.2.點到直線的距離.3.弦長公式.4.最值的求法.
科目:高中數(shù)學 來源:2014屆山西省高三第一次四校聯(lián)考理數(shù)學卷(解析版) 題型:解答題
設(shè)橢圓
的左焦點為
,離心率為
,過點
且與
軸垂直的直線被橢圓截得的線段長為
.
(1) 求橢圓方程.
(2) 過點
的直線
與橢圓交于不同的兩點
,當
面積最大時,求
.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆山西省高三第一次四校聯(lián)考文數(shù)學卷(解析版) 題型:解答題
設(shè)橢圓
的左焦點為
,離心率為
,過點
且與
軸垂直的直線被橢圓截得的線段長為
.
(1) 求橢圓方程.
(2) 過點
的直線
與橢圓交于不同的兩點
,當
面積最大時,求
.
查看答案和解析>>
科目:高中數(shù)學 來源:2013年全國普通高等學校招生統(tǒng)一考試文科數(shù)學(天津卷解析版) 題型:解答題
設(shè)橢圓
的左焦點為F, 離心率為
, 過點F且與x軸垂直的直線被橢圓截得的線段長為
.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)A, B分別為橢圓的左右頂點, 過點F且斜率為k的直線與橢圓交于C, D兩點. 若
, 求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設(shè)橢圓
的左焦點為F, 離心率為
, 過點F且與x軸垂直的直線被橢圓截得的線段長為
.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)A, B分別為橢圓的左右頂點, 過點F且斜率為k的直線與橢圓交于C, D兩點. 若
, 求k的值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com