【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如表資料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)y(個) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出
關(guān)于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?
參考公式:
,![]()
【答案】(1)
(2)
(3)該小組所得線性回歸方程是理想的
【解析】試題分析:(1)第(1)問,一般直接利用古典概型的概率公式計算. (2)第(2)問,先計算出回歸方程的基本量,再代入回歸方程即可. (3)計算出x=10和x=6對應(yīng)的誤差,再判斷.
試題解析:(1)設(shè)抽到相鄰兩個月的數(shù)據(jù)為事件A.因為從6組數(shù)據(jù)中選取2組數(shù)據(jù)共有15種情況,每種情況都是等可能出現(xiàn)的其中,抽到相鄰兩個月份的數(shù)據(jù)的情況有5種,所以
.
(2)由數(shù)據(jù)求得
,由公式求得
,再由
.
所以y關(guān)于x的線性回歸方程為
.
(3)當(dāng)x=10時,
;同樣,當(dāng)x=6時,
,
所以該小組所得線性回歸方程是理想的.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)f(x)=xlnx.
(1)求曲線f(x)在點(1,f(1))處的切線方程;
(2)對x≥1,f(x)≤m(x2﹣1)成立,求實數(shù)m的最小值;
(3)證明:1n
.(n∈N*)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足a1=1,nan+1=(n+1)an+n(n+1),n∈N* .
(1)證明:數(shù)列{
}是等差數(shù)列;
(2)設(shè)bn=3n
,求數(shù)列{bn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以坐標原點
為圓心的圓與拋物線
相交于不同的兩點
,
,與拋物線
的準線相交于不同的兩點
,
,且
.
(1)求拋物線
的方程;
(2)若不經(jīng)過坐標原點
的直線
與拋物線
相交于不同的兩點
,
,且滿足
.證明直線
過定點
,并求出點
的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義非零向量
的“相伴函數(shù)”為
(
),向量
稱為函數(shù)
的“相伴向量”(其中
為坐標原點),記平面內(nèi)所有向量的“相伴函數(shù)”構(gòu)成的集合為
.
(1)已知
(
),求證:
,并求函數(shù)
的“相伴向量”模的取值范圍;
(2)已知點
(
)滿足
,向量
的 “相伴函數(shù)”
在
處取得最大值,當(dāng)點
運動時,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究冬季晝夜溫差大小對某反季節(jié)大豆新品種發(fā)芽率的影響,某農(nóng)科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如下資料:
組號 | 1 | 2 | 3 | 4 | 5 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù) | 23 | 25 | 30 | 26 | 16 |
該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
(1)若選取的是第1組與第5組的兩組數(shù)據(jù),請根據(jù)第2組至第4組的數(shù)據(jù),求出
關(guān)于
的線性回歸方程
;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(參考公式:
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位將舉辦慶典活動,要在廣場上豎立一形狀為等腰梯形的彩門BADC (如圖),設(shè)計要求彩門的面積為S (單位:m2)高為h(單位:m)(S,h為常數(shù)),彩門的下底BC固定在廣場地面上,上底和兩腰由不銹鋼支架構(gòu)成,設(shè)腰和下底的夾角為α,不銹鋼支架的長度和記為l. ![]()
(1)請將l表示成關(guān)于α的函數(shù)l=f(α);
(2)問當(dāng)α為何值時l最。坎⑶笞钚≈担
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)已知等差數(shù)列{an}滿足a1+a2=10,a4-a3=2.
(1)求{an}的通項公式.
(2)設(shè)等比數(shù)列{bn}滿足b2=a3,b3=a7.問:b6與數(shù)列{an}的第幾項相等?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某地一天從 6 ~ 14 時的溫度變化曲線近似滿足函數(shù):
,則中午 12 點時最接近的溫度為
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com