分析 由題意,△PF1F2的內(nèi)切圓的圓心的橫坐標(biāo)為a,若△PF1F2的內(nèi)切圓半徑為1且圓心G到原點(diǎn)O的距離為$\sqrt{5}$,求出a,利用雙曲線(xiàn)的定義及面積公式,求出b,即可得出雙曲線(xiàn)的方程.
解答
解:由題意,△PF1F2的內(nèi)切圓的圓心的橫坐標(biāo)為a,
若△PF1F2的內(nèi)切圓半徑為1且圓心G到原點(diǎn)O的距離為$\sqrt{5}$,
則a2+1=5,∴a=2,
設(shè)|PF1|=m,|PF2|=n(m>n),則$\left\{\begin{array}{l}{m-n=4}\\{\frac{1}{2}×2c×\frac{5}{2}=\frac{1}{2}(m+n+2c)}\end{array}\right.$,∴n=$\frac{3}{2}$c-2,
∵點(diǎn)P(x0,$\frac{5}{2}$)為雙曲線(xiàn)上一點(diǎn),
∴$\frac{n}{{x}_{0}-\frac{4}{c}}$=$\frac{c}{2}$,∴n=$\frac{c}{2}{x}_{0}$-2,∴$\frac{c}{2}{x}_{0}$-2=$\frac{3}{2}$c-2,∴x0=3,
∴$\frac{9}{4}-\frac{\frac{25}{4}}{^{2}}$=1,∴b=$\sqrt{5}$,
∴雙曲線(xiàn)方程為$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1.
故答案為$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1
點(diǎn)評(píng) 本題考查雙曲線(xiàn)的方程與性質(zhì),考查三角形的內(nèi)切圓,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
| x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| y | 66 | 69 | 73 | 81 | 89 | 90 | 91 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0 | B. | 1 | C. | -1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{2}{5}$ | B. | $\frac{\sqrt{10}}{5}$ | C. | $\frac{1}{5}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | cos10° | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | {2} | B. | {3} | C. | {2,3,4} | D. | {1,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a<$\frac{1}{3}$ | B. | $\frac{1}{3}$<a<$\frac{2}{3}$ | C. | a>1 | D. | $\frac{1}{3}$<a<$\frac{2}{3}$或a>1 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com