【題目】為增強市民的節(jié)能環(huán)保意識,鄭州市面向全市征召義務(wù)宣傳志愿者,從符合條件的500名志愿者中隨機抽取100名,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)是:
.
![]()
(Ⅰ)求圖中
的值,并根據(jù)頻率分布直方圖估計這500名志愿者中年齡在
歲的人數(shù);
(Ⅱ)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取10名參加中心廣場的宣傳活動,再從這10名志愿者中選取3名擔(dān)任主要負(fù)責(zé)人.記這3名志愿者中“年齡低于35歲”的人數(shù)為
,求
的分布列及數(shù)學(xué)期望.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓![]()
過點
,離心率為
,
分別為左右焦點.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若
上存在兩個點
,橢圓上有兩個點
滿足
三點共線,
三點共線,且
,求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b是不同的直線,α,β是不同的平面,則下列四個命題中正確的是________.(填序號)
① 若a⊥b,a⊥α,則b∥α;② 若a∥α,α⊥β,則a⊥β;
③ 若a⊥β,α⊥β,則a∥α;④ 若a⊥b,a⊥α,b⊥β,則α⊥β.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
的焦點
上一點
到焦點的距離為
.
(1)求
的方程;
(2)過
作直線
,交
于
兩點,若直線
中點的縱坐標(biāo)為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點
且斜率為
的直線
與圓
:
交于點
兩點.
(1)求
的取值范圍;
(2)請問是否存在實數(shù)k使得
(其中
為坐標(biāo)原點),如果存在請求出k的值,并求
;如果不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列
是首項為0的遞增數(shù)列,
,滿足:對于任意的
總有兩個不同的根,則
的通項公式為_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一直徑為8米的半圓形空地,現(xiàn)計劃種植甲、乙兩種水果,已知單位面積種植甲水果的經(jīng)濟價值是種植乙水果經(jīng)濟價值的5倍,但種植甲水果需要有輔助光照.半圓周上的
處恰有一可旋轉(zhuǎn)光源滿足甲水果生長的需要,該光源照射范圍是
,點
在直徑
上,且
.
![]()
(1)若
米,求
的長;
(2)設(shè)
, 求該空地產(chǎn)生最大經(jīng)濟價值時種植甲種水果的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的左右焦點分別為
,過
作垂直于
軸的直線
交橢圓
于
兩點,且滿足
.
(1)求橢圓
的離心率;
(2)過
作斜率為
的直線
交
于
兩點.
為坐標(biāo)原點,若
的面積為
,求橢圓
的方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com