【題目】如圖1,在四棱錐
中,底面
是正方形,
.
(1)如圖2,設(shè)點(diǎn)
為
的中點(diǎn),點(diǎn)
為
的中點(diǎn),求證:
平面
;
(2)已知網(wǎng)格紙上小正方形的邊長為
,請你在網(wǎng)格紙上用粗線畫圖1中四棱錐
的府視圖(不需要標(biāo)字母),并說明理由.
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
為奇函數(shù)
(1)比較
的大小,并說明理由.(提示:
)
(2)若
,且
對
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,
,其中
均為實(shí)數(shù).
(I)求
的極值;
(II)設(shè)
,
,求證:對
,
恒成立.
(III)設(shè)
,若對
給定的
,在區(qū)間
上總存在
使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題:已知
為實(shí)數(shù),若關(guān)于
的不等式
有非空解集,則
,寫出該命題的逆命題、否命題、逆否命題,并判斷這些命題的真假.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱
(側(cè)棱垂直于底面,且底面是正三角形)中,
是棱
上一點(diǎn).
![]()
(1)若
分別是
的中點(diǎn),求證:
平面
;
(2)求證:不論
在何位置,四棱錐
的體積都為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】時(shí)下,租車已經(jīng)成為新一代的流行詞,租車自駕游也慢慢流行起來,某小車租車點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是,不超過2天按照300元計(jì)算;超過兩天的部分每天收費(fèi)標(biāo)準(zhǔn)為100元(不足1天的部分按1天計(jì)算).有甲乙兩人相互獨(dú)立來該租車點(diǎn)租車自駕游(各租一車一次),設(shè)甲、乙不超過2天還車的概率分別為
;2天以上且不超過3天還車的概率分別
;兩人租車時(shí)間都不會超過4天.
(1)求甲所付租車費(fèi)用大于乙所付租車費(fèi)用的概率;
(2)設(shè)甲、乙兩人所付的租車費(fèi)用之和為隨機(jī)變量
,求
的分布列與數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列
中,已知
,
,
,設(shè)
為
的前
項(xiàng)和.
(1)求證:數(shù)列
是等差數(shù)列;
(2)求
;
(3)是否存在正整數(shù)
,
,![]()
,使
成等差數(shù)列?若存在,求出
,
,
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)
(單位:千元)對年銷售量
(單位:
)和年利潤
(單位:千元)的影響,對近8年的年宣傳費(fèi)
和年銷售量
數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
![]()
![]()
表中
,
.
(1)根據(jù)散點(diǎn)圖判斷,
與
哪一個(gè)適宜作為年銷售量
關(guān)于年宣傳費(fèi)
的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立
關(guān)于
的回歸方程;
(3)已知這種產(chǎn)品的年利潤
與
、
的關(guān)系為
.根據(jù)(2)的結(jié)果要求:年宣傳費(fèi)
為何值時(shí),年利潤最大?
附:對于一組數(shù)據(jù)
,
,…,
其回歸直線
的斜率和截距的最小二乘估計(jì)分別為
,
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com