分析 根據條件可以求出向量$\overrightarrow{CD},\overrightarrow{OC},\overrightarrow{OD},\overrightarrow{OB},\overrightarrow{OA}$的坐標,從而進行向量數量積的坐標運算便可求出${\overrightarrow{CD}}^{2},\overrightarrow{OC}•\overrightarrow{OD},\overrightarrow{OC}•\overrightarrow{OB},\overrightarrow{OD}•\overrightarrow{OA}$的值,這樣將這些值代入${\overrightarrow{CD}}^{2}≥(m-2)\overrightarrow{OC}•\overrightarrow{OD}$$+m(\overrightarrow{OC}•\overrightarrow{OB})•(\overrightarrow{OD}•\overrightarrow{OA})$并整理便可得出c2+a2+d2+b2≥m(ac+bd+bc).
解答 解:根據條件,
${\overrightarrow{CD}}^{2}=(c-a)^{2}+(d-b)^{2}$,$\overrightarrow{OC}•\overrightarrow{OD}=ac+bd$,$\overrightarrow{OC}•\overrightarrow{OB}=b,\overrightarrow{OD}•\overrightarrow{OA}=c$,代入${\overrightarrow{CD}}^{2}≥(m-2)\overrightarrow{OC}•\overrightarrow{OD}$$+m(\overrightarrow{OC}•\overrightarrow{OB})•(\overrightarrow{OD}•\overrightarrow{OA})$并整理得:
c2+a2+d2+b2≥m(ac+bd+bc),
即c2+a2+d2+b2-m(ac+bd+bc)≥0恒成立,配方得:
(a-$\frac{mc}{2}$)2+(d-$\frac{mb}{2}$)2+$\frac{4-{m}^{2}}{4}$(c2+b2-$\frac{4m}{4-{m}^{2}}$bc)≥0恒成立,
有(a-$\frac{mc}{2}$)2≥0,(d-$\frac{mb}{2}$)2≥0滿足,
則要:$\frac{4-{m}^{2}}{4}$(c2+b2-$\frac{4m}{4-{m}^{2}}$bc)≥0恒成立,
則有:$\left\{\begin{array}{l}{\frac{4-{m}^{2}}{4}≥0}\\{(-\frac{4m}{4-{m}^{2}})^{2}-4≤0}\end{array}\right.$,
解得-2≤m≤$\sqrt{5}$-1,
所以m最大值為$\sqrt{5}$-1.
點評 考查根據點的坐標求向量的坐標,以及向量數量積的坐標運算,不等式a2+b2≥2ab的運用,清楚該不等式等號成立的條件.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com