【題目】已知函數(shù)
,其中
為常數(shù),且
.
(1)若
是奇函數(shù),求
的取值集合
;
(2)當(dāng)
時,設(shè)
的反函數(shù)
,且
的圖象與
的圖象關(guān)于
對稱,求
的取值集合
;
(3)對于問題(1)(2)中的
、
,當(dāng)
時,不等式
恒成立,求
的取值范圍.
【答案】(1)
;(2)
;(3)
.
【解析】
(1)由
求出實數(shù)
的值,然后檢驗此時函數(shù)
為奇函數(shù),由此可得出集合
;
(2)當(dāng)
時,由
得
,解得
,可得出
,然后解出方程
可得出集合
;
(3)原問題轉(zhuǎn)化為
,
恒成立,可得出
或
,由此能求出實數(shù)
的取值范圍.
(1)由于函數(shù)
為奇函數(shù),且定義域為
,則
,
,
,
由題意得
,整理得
,解得
或
.
,
,則
,定義域為
,關(guān)于原點對稱,
,
此時,函數(shù)
為奇函數(shù),合乎題意,因此,
;
(2)當(dāng)
時,由
得
,可得
,得
,
,所以,
,
由于
的圖象與
的圖象關(guān)于
對稱,
則
為方程
的實數(shù)解,解方程
,即
,
變形得
,解得
,即
,因此,
;
(3)令
,
原問題轉(zhuǎn)化為
在
上恒成立,
則
或
,
即
或
,解得
.
因此,實數(shù)
的取值范圍是
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定橢圓C:
(
),稱圓心在原點O,半徑為
的圓是橢圓C的“衛(wèi)星圓”.若橢圓C的離心率
,點
在C上.
(1)求橢圓C的方程和其“衛(wèi)星圓”方程;
(2)點P是橢圓C的“衛(wèi)星圓”上的一個動點,過點P作直線
,
使得![]()
![]()
,與橢圓C都只有一個交點,且
,
分別交其“衛(wèi)星圓”于點M,N,證明:弦長
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某居民區(qū)有一個銀行網(wǎng)點(以下簡稱“網(wǎng)點”),網(wǎng)點開設(shè)了若干個服務(wù)窗口,每個窗口可以辦理的業(yè)務(wù)都相同,每工作日開始辦理業(yè)務(wù)的時間是8點30分,8點30分之前為等待時段.假設(shè)每位儲戶在等待時段到網(wǎng)點等待辦理業(yè)務(wù)的概率都相等,且每位儲戶是否在該時段到網(wǎng)點相互獨立.根據(jù)歷史數(shù)據(jù),統(tǒng)計了各工作日在等待時段到網(wǎng)點等待辦理業(yè)務(wù)的儲戶人數(shù),得到如圖所示的頻率分布直方圖:
![]()
(1)估計每工作日等待時段到網(wǎng)點等待辦理業(yè)務(wù)的儲戶人數(shù)的平均值;
(2)假設(shè)網(wǎng)點共有1000名儲戶,將頻率視作概率,若不考慮新增儲戶的情況,解決以下問題:
①試求每位儲戶在等待時段到網(wǎng)點等待辦理業(yè)務(wù)的概率;
②儲戶都是按照進入網(wǎng)點的先后順序,在等候人數(shù)最少的服務(wù)窗口排隊辦理業(yè)務(wù).記“每工作日上午8點30分時網(wǎng)點每個服務(wù)窗口的排隊人數(shù)(包括正在辦理業(yè)務(wù)的儲戶)都不超過3”為事件
,要使事件
的概率不小于0.75,則網(wǎng)點至少需開設(shè)多少個服務(wù)窗口?
參考數(shù)據(jù):
;
;
;
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已如橢圓E:
(
)的離心率為
,點
在E上.
(1)求E的方程:
(2)斜率不為0的直線l經(jīng)過點
,且與E交于P,Q兩點,試問:是否存在定點C,使得
?若存在,求C的坐標(biāo):若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知半圓
:
,
、
分別為半圓
與
軸的左、右交點,直線
過點
且與
軸垂直,點
在直線
上,縱坐標(biāo)為
,若在半圓
上存在點
使
,則
的取值范圍是( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)討論
的單調(diào)性;
(2)定義:對于函數(shù)
,若存在
,使
成立,則稱
為函數(shù)
的不動點.如果函數(shù)
存在不動點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)對某市工薪階層關(guān)于“樓市限購令”的態(tài)度進行調(diào)查,隨機抽調(diào)了50人,他們月收入的頻數(shù)分布及對“樓市限購令”贊成人數(shù)如表:
月收入(單位百元) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 8 | 12 | 5 | 2 | 1 |
(Ⅰ)由以上統(tǒng)計數(shù)據(jù)填下面2×2列聯(lián)表并問是否有99%的把握認為“月收入以5500為分界點”對“樓市限購令”的態(tài)度有差異;
月收入低于55百元的人數(shù) | 月收入不低于55百元的人數(shù) | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(Ⅱ)若采用分層抽樣在月收入在[15,25),[25,35)的被調(diào)查人中共隨機抽取6人進行追蹤調(diào)查,并給予其中3人“紅包”獎勵,求收到“紅包”獎勵的3人中至少有1人收入在[15,25)的概率.
參考公式:K2
,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com