分析 根據(jù)函數(shù)單調(diào)性的定義證明即可.
解答 解:設(shè)-2<x1<x2,
則f(x1)-f(x2)
=$\frac{{ax}_{1}+1}{{x}_{1}+2}$-$\frac{{ax}_{2}+1}{{x}_{2}+2}$
=$\frac{({ax}_{1}+1){(x}_{2}+2)-({ax}_{2}+1){(x}_{1}+2)}{{(x}_{1}+2){(x}_{2}+2)}$
=$\frac{(2a-1){(x}_{1}{-x}_{2})}{{(x}_{1}+2){(x}_{2}+2)}$>0,
故函數(shù)f(x)是減函數(shù).
點評 本題考查了通過定義證明函數(shù)的單調(diào)性問題,是一道基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 相交并且過圓心 | B. | 相交不過圓心 | C. | 相切 | D. | 相離 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{π}{6}$或$\frac{5π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{6}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 38 | B. | 20 | C. | 10 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-∞,0]∪[2,+∞) | B. | (-∞,0]∪(2,+∞) | C. | (-∞,0)∪[2,+∞) | D. | (-∞,0)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | f(x)=x3 | B. | f(x)=${x}^{-\frac{1}{2}}$ | C. | f(x)=-x | D. | f(x)=x+$\frac{3}{x}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com