分析 由an2-an-12=an+an-1可得an-an-1=1,從而證明并求通項(xiàng)公式;
(2)化簡(jiǎn)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{n}$-$\frac{1}{n+1}$,從而利用裂項(xiàng)求和法求其前n項(xiàng)和.
解答 解:(1)∵an2-an-12=an+an-1,
∴(an-an-1)(an+an-1)=an+an-1,
∵數(shù)列{an}各項(xiàng)均為正整數(shù),
∴an-an-1=1,
∴{an}是以1為首項(xiàng),1為公差的等差數(shù)列,
∴an=n;
(2)證明:bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
故Sn=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$)
=1-$\frac{1}{n+1}$<1;
故Sn<1.
點(diǎn)評(píng) 本題考查了方程的思想的應(yīng)用及裂項(xiàng)求和法的應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5 | B. | 6 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $-\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | $±\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ($\sqrt{2}-1$,1) | B. | [$\sqrt{2}$-1,1) | C. | (2-$\sqrt{2}$,1) | D. | [2-$\sqrt{2}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4 | B. | 5 | C. | $\sqrt{2}$ | D. | $\frac{\sqrt{10}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 第48項(xiàng) | B. | 第49項(xiàng) | C. | 第50項(xiàng) | D. | 第51項(xiàng) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com