(本小題滿分15分)將進貨單價為80元的商品按90元一個售出時,能賣出400個,已知這種商品每個漲價1元,其銷售量就減少10個,為了取得最大利潤,每個售價應(yīng)定為多少元?
105元。
解析試題分析:設(shè)每個售價應(yīng)定為90+x------------------2分
利潤y=(90+x-80)(400-10x)----------- ------8分
X=15取得最大利潤,每個售價應(yīng)定為105元 -------13分
考點:函數(shù)的實際應(yīng)用。
點評:研究數(shù)學(xué)模型,建立數(shù)學(xué)模型,進而借鑒數(shù)學(xué)模型,對提高解決實際問題的能力,以及提高數(shù)學(xué)素養(yǎng)都是十分重要的.建立模型的步驟可分為: (1) 分析問題中哪些是變量,哪些是常量,分別用字母表示; (2) 根據(jù)所給條件,運用數(shù)學(xué)知識,確定等量關(guān)系; (3) 寫出
的解析式并指明定義域。
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù)![]()
,在同一周期內(nèi),
當
時,
取得最大值
;當
時,
取得最小值
.
(Ⅰ)求函數(shù)
的解析式;
(Ⅱ)求函數(shù)
的單調(diào)遞減區(qū)間;
(Ⅲ)若
時,函數(shù)
有兩個零點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)設(shè)函數(shù)
的定義域為
,記函數(shù)
的最大值為
.
(1)求
的解析式;(2)已知
試求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
是奇函數(shù):
(1)求實數(shù)
和
的值;
(2)證明
在區(qū)間
上的單調(diào)遞減
(3)已知
且不等式
對任意的
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)
(
為常數(shù))。
(Ⅰ)函數(shù)
的圖象在點(
)處的切線與函數(shù)
的圖象相切,求實數(shù)
的值;
(Ⅱ)設(shè)
,若函數(shù)
在定義域上存在單調(diào)減區(qū)間,求實數(shù)
的取值范圍;
(Ⅲ)若
,對于區(qū)間[1,2]內(nèi)的任意兩個不相等的實數(shù)
,
,都有
成立,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
在經(jīng)濟學(xué)中,函數(shù)f(x)的邊際函數(shù)Mf(x)定義為Mf(x)=f(x+1)-f(x).某公司每月生產(chǎn)x臺某種產(chǎn)品的收入為R(x)元,成本為C(x)元,且R(x)=3 000x-20x2,C(x)=500x+4 000(x∈N*).現(xiàn)已知該公司每月生產(chǎn)該產(chǎn)品不超過100臺.
(1)求利潤函數(shù)P(x)以及它的邊際利潤函數(shù)MP(x);
(2)求利潤函數(shù)的最大值與邊際利潤函數(shù)的最大值之差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知二次函數(shù)
的圖象過點
,且與
軸有唯一的交點
.(1)求
的表達式;
(2)當
時,求函數(shù)
的最小值。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com