分析 (1)若點(diǎn)P(1,$\sqrt{3}$),求出切線斜率,即可求直線m的方程;
(2)當(dāng)P在圓O上運(yùn)動(dòng)時(shí),證明kAE=kAM,即可證明A,E,M三點(diǎn)共線.
解答 (1)解:∵點(diǎn)P(1,$\sqrt{3}$),
∴kOP=$\sqrt{3}$,∴km=-$\frac{\sqrt{3}}{3}$,
∴直線m的方程為y-$\sqrt{3}$=-$\frac{\sqrt{3}}{3}$(x-1),即x+$\sqrt{3}$y-4=0;
(2)證明:設(shè)P(m,n),則直線m的方程為mx+ny-4=0,x=2,M(2,$\frac{4-2m}{n}$).
又E(m,$\frac{n}{2}$),∴kAE=$\frac{\frac{n}{2}}{m+2}$=$\frac{n}{2m+4}$,kAM=$\frac{\frac{4-2m}{n}}{4}$=$\frac{2-m}{2n}$,
∵m2+n2=4,∴kAE=kAM,
∴A,E,M三點(diǎn)共線.
點(diǎn)評(píng) 本題考查直線方程,考查直線與圓的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com