已知圓
,直線
經(jīng)過(guò)點(diǎn)
,
(Ⅰ)求以線段CD為直徑的圓E的方程;
(Ⅱ)若直線
與圓C相交于
,
兩點(diǎn),且
為等腰直角三角形,求直線
的方程.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)求直線
關(guān)于直線
,對(duì)稱(chēng)的直線方程;
(2)已知實(shí)數(shù)
滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓
與圓
相交于A、B兩點(diǎn).
(1)求過(guò)A、B兩點(diǎn)的直線方程.
(2)求過(guò)A、B兩點(diǎn)且圓心在直線
上的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)
是圓
上的點(diǎn)
(1)求
的取值范圍;
(2)若
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直角坐標(biāo)平面上點(diǎn)Q(2,0)和圓C:x2+y2=1,動(dòng)點(diǎn)M到圓C的切線長(zhǎng)與|MQ|的比等于常數(shù)λ(λ>0).求動(dòng)點(diǎn)M的軌跡方程,說(shuō)明它表示什么曲線。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
過(guò)點(diǎn)
的圓C與直線
相切于點(diǎn)
.
(1)求圓C的方程;
(2)已知點(diǎn)
的坐標(biāo)為
,設(shè)
分別是直線
和圓
上的動(dòng)點(diǎn),求
的最小值.
(3)在圓C上是否存在兩點(diǎn)
關(guān)于直線
對(duì)稱(chēng),且以
為直徑的圓經(jīng)過(guò)原點(diǎn)?若存在,寫(xiě)出直線
的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓
及點(diǎn)
.
(1)
在圓上,求線段
的長(zhǎng)及直線
的斜率;
(2)若
為圓
上任一點(diǎn),求
的最大值和最小值;
(3)若實(shí)數(shù)
滿足
,求
的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C:
內(nèi)有一點(diǎn)P(2,2),過(guò)點(diǎn)P作直線
交圓C于A、B兩點(diǎn)。
(1)當(dāng)
經(jīng)過(guò)圓心C時(shí),求直線
的方程;
(2)當(dāng)弦AB的長(zhǎng)為
時(shí),寫(xiě)出直線
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分16分,第1小題4分,第2小題6分,第3小題6分)
設(shè)橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,線段OF1、OF2的中點(diǎn)分別為B1、B2,且△AB1B2是面積為
的直角三角形.過(guò)B1作直線l交橢圓于P、Q兩點(diǎn).
(1) 求該橢圓的標(biāo)準(zhǔn)方程;
(2) 若
,求直線l的方程;
(3) 設(shè)直線l與圓O:x2+y2=8相交于M、N兩點(diǎn),令|MN|的長(zhǎng)度為t,若t∈
,求△B2PQ的面積
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com