已知拋物線
及點
,直線
的斜率為1且不過點P,與拋物線交于A,B兩點。
(1) 求直線
在
軸上截距的取值范圍;
(2) 若AP,BP分別與拋物線交于另一點C,D,證明:AD、BC交于定點。
(1)
;(2)設(shè)A,B兩點的坐標分別為
,直線AD的方程為
,當(dāng)
時,![]()
即直線AD與
軸的交點為
,同理可得BC與
軸的交點也為![]()
所以AD、BC交于定點
.
解析試題分析:(1) 設(shè)直線
的方程為
,由于直線
不過點P,因此 ![]()
由
得 ![]()
由
解得![]()
所以直線
在
軸上截距的取值范圍是
。
(2) 證明:設(shè)A,B兩點的坐標分別為![]()
因為AB的斜率為1,所以 ![]()
設(shè)點D坐標為
,因為B,P,D共線,所以![]()
得 ![]()
直線AD的方程為![]()
當(dāng)
時,![]()
即直線AD與
軸的交點為![]()
同理可得BC與
軸的交點也為![]()
所以AD、BC交于定點
.
考點:直線與拋物線的綜合應(yīng)用;拋物線的簡單性質(zhì);斜率公式;直線方程的點斜式。
點評:直線與圓錐曲線綜合應(yīng)用的有關(guān)問題,其特點是計算量特別大,且較為復(fù)雜。因此,我們在計算的時候一定要仔細、認真,要做到會的得滿分,不會的盡量多得步驟分。
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知橢圓的中點在原點O,焦點在x軸上,點
是其左頂點,點C在橢圓上且
·
="0," |
|=|
|.(點C在x軸上方)
(I)求橢圓的方程;
(II)若平行于CO的直線
和橢圓交于M,N兩個不同點,求
面積的最大值,并求此時直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
雙曲線
與雙曲線
有共同的漸近線,且經(jīng)過點
,橢圓
以雙曲線
的焦點為焦點且橢圓上的點與焦點的最短距離為
,求雙曲線
和橢圓
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)已知橢圓C1:
的離心率為
,直線l: y-=x+2與.以原點為圓心、橢圓C1的短半軸長為半徑的圓O相切.
(1)求橢圓C1的方程;
(ll)設(shè)橢圓C1的左焦點為F1,右焦點為F2,直線l2過點F價且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;
(III)過橢圓C1的左頂點A作直線m,與圓O相交于兩點R,S,若△ORS是鈍角三角形, 求直線m的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知中心在坐標原點O,焦點在
軸上,長軸長是短軸長的2倍的橢圓經(jīng)過點M(2,1)
(Ⅰ)求橢圓的方程;
(Ⅱ)直線
平行于
,且與橢圓交于A、B兩個不同點.
(ⅰ)若
為鈍角,求直線
在
軸上的截距m的取值范圍;
(ⅱ)求證直線MA、MB與x軸圍成的三角形總是等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知![]()
、![]()
為橢圓的焦點,且直線
與橢圓相切.
(Ⅰ)求橢圓方程;
(Ⅱ)過
的直線交橢圓于
、
兩點,求△
的面積
的最大值,并求此時直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)直線l:y=kx+1與雙曲線C:
的右支交于不同的兩點A,B.
(Ⅰ)求實數(shù)k的取值范圍;
(Ⅱ)是否存在實數(shù)k,使得以線段AB為直徑的圓經(jīng)過雙曲線C的右焦點F?若存在,求出k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
過點
,且離心率e=
.
(Ⅰ)求橢圓方程;
(Ⅱ)若直線
與橢圓交于不同的兩點
、
,且線段
的垂直平分線過定點
,求
的取值范圍。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com