欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

13.設(shè)直角三角形ABC三邊長成等比數(shù)列,公比為q(q>1),則q2的值為$\frac{\sqrt{5}+1}{2}$.

分析 由題意設(shè)直角三角形ABC三邊長分別為$\frac{m}{q},m,mq$(q>1),結(jié)合直角三角形中的勾股定理列式求得q2的值.

解答 解:由題意設(shè)直角三角形ABC三邊長分別為$\frac{m}{q},m,mq$(q>1),
則由勾股定理可得:$(\frac{m}{q})^{2}+{m}^{2}=(mq)^{2}$,即q4-q2-1=0,
解得${q}^{2}=\frac{1-\sqrt{5}}{2}$(舍)或${q}^{2}=\frac{\sqrt{5}+1}{2}$.
故答案為:$\frac{\sqrt{5}+1}{2}$.

點(diǎn)評 本題考查等比數(shù)列的通項(xiàng)公式,考查了等比數(shù)列的性質(zhì),是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=60°,DC=1,AD=$\sqrt{3}$.已知PB=PC.
(1)若N為PA的中點(diǎn),求證:DN∥平面PBC;
(2)若M為BC的中點(diǎn),求證:MN⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面四邊形ABCD中,AB⊥AD,BC=1,cosB=$\frac{2\sqrt{7}}{7}$,∠ACB=$\frac{2π}{3}$.
(1)求AC的長;
(2)若AD=$\sqrt{21}$,求CD的長和四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.定義點(diǎn)P到圖形C上每一個點(diǎn)的距離的最小值為點(diǎn)P到圖形C的距離,那么平面內(nèi)到定圓C的距離與到定點(diǎn)A(A在圓C內(nèi)且不與圓心C重合)的距離相等的點(diǎn)的軌跡是(  )
A.直線B.C.橢圓D.雙曲線的一支

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知(3x+$\frac{a}{2x}$)(2x-$\frac{1}{x}$)5的展開式中的各項(xiàng)系數(shù)和為4,則x2項(xiàng)的系數(shù)為160.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)f(x)與g(x)都是定義在區(qū)間[x1,x2]上的函數(shù),若對任意x∈[x1,x2],都有(f(x)+g(x))2≤2,則稱f(x)和g(x)為“2度相關(guān)函數(shù)”.若函數(shù)f(x)與函數(shù)g(x)=x+2在[1,2]上為“2度相關(guān)函數(shù)”,則函數(shù)f(x)的解析式可以為(  )
A.f(x)=x2+2x+1B.f(x)=-3x+2C.f(x)=-x2+2x-4D.f(x)=x+lnx-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,已知a=2,b=$\sqrt{6}$,A=45°,則滿足條件的三角形有(  )
A.一個B.兩個C.0D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在數(shù)列{an}中,設(shè)S1=a1+a2+a3+a4+…+an,S2=an+1+an+2+an+3+…+a2n,S3=a2n+1+a2n+3+…+a3n
(1)如果{an}是以d為公差的等差數(shù)列,求證S1,S2,S3也是等差數(shù)列,并求其公差;
(2)如果{an}是以q為公比的等比數(shù)列,求證S1,S2,S3也是等比數(shù)列,并求其公比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.定義|$|\begin{array}{l}{a}&\\{c}&0xgpv5f\end{array}|$|=ad-bc,則$|\begin{array}{l}{sin50°}&{cos40°}\\{-\sqrt{3}tan10°}&{1}\end{array}|$=2sin10°.

查看答案和解析>>

同步練習(xí)冊答案