【題目】若直線
與曲線
滿足以下兩個條件:點(diǎn)
在曲線
上,直線
方程為
;曲線
在點(diǎn)
附近位于直線
的兩側(cè),則稱直線
在點(diǎn)
處“切過”曲線
.下列選項(xiàng)正確的是( )
A.直線
在點(diǎn)
處“切過”曲線![]()
B.直線
在點(diǎn)
處“切過”曲線![]()
C.直線
在點(diǎn)
處“切過”曲線![]()
D.直線
在點(diǎn)
處“切過”曲線![]()
【答案】AC
【解析】
對四個選項(xiàng)逐一判斷直線
是否是曲線
在點(diǎn)
的切線方程,然后結(jié)合圖像判斷直線
是否滿足“切過”,由此確定正確選項(xiàng).
對于A選項(xiàng),曲線
,
,
,所以曲線
在點(diǎn)
的切線方程為
,圖像如下圖所示,由圖可知直線
在點(diǎn)
處“切過”曲線
,故A選項(xiàng)正確.
![]()
對于B選項(xiàng),曲線
,
,
,所以曲線
在點(diǎn)
的切線方程為
,故B選項(xiàng)錯誤.
![]()
對于C選項(xiàng),曲線
,
,
,所以曲線
在點(diǎn)
的切線方程為
,圖像如下圖所示,由圖可知直線
在點(diǎn)
處“切過”曲線
,故C選項(xiàng)正確.
![]()
對于D選項(xiàng),曲線
,
,
,所以曲線
在點(diǎn)
的切線方程為
,圖像如下圖所示,由圖可知直線
在點(diǎn)
處沒有“切過”曲線
,故D選項(xiàng)錯誤.
![]()
故選:AC
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,由明代數(shù)學(xué)家程大位編著,它對我國民間普及珠算和數(shù)學(xué)知識起到了很大的作用,是東方古代數(shù)學(xué)的名著.在這部著作中,許多數(shù)學(xué)問題都是以歌訣形式呈現(xiàn)的,“九兒問甲歌”就是其中一首:一個公公九個兒,若問生年總不知,自長排來差三歲,共年二百又零七,借問長兒多少歲,各兒歲數(shù)要詳推.在這個問題中,這位公公年齡最小的兒子的年齡為( )
![]()
A.8B.9C.11D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)若
在
處的切線與直線
平行,求
的值及
的單調(diào)區(qū)間;
(2)當(dāng)
時,求證:
在定義域內(nèi)有且只有兩個極值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知直線
的參數(shù)方程為
(
為參數(shù)).在以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸,且與直角坐標(biāo)系長度單位相同的極坐標(biāo)系中,曲線
的極坐標(biāo)方程是
.
(1)求直線
的普通方程與曲線
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)
.若直
與曲線
相交于兩點(diǎn)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的離心率為
,點(diǎn)
為左焦點(diǎn),過點(diǎn)
作
軸的垂線交橢圓
于
、
兩點(diǎn),且
.
(1)求橢圓
的方程;
(2)在圓
上是否存在一點(diǎn)
,使得在點(diǎn)
處的切線
與橢圓
相交于
、
兩點(diǎn)滿足
?若存在,求
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中實(shí)數(shù)a為常數(shù).
(I)當(dāng)a=-l時,確定
的單調(diào)區(qū)間:
(II)若f(x)在區(qū)間
(e為自然對數(shù)的底數(shù))上的最大值為-3,求a的值;
(Ⅲ)當(dāng)a=-1時,證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右頂點(diǎn)分別為
、
,上、下頂點(diǎn)分別為
,
,
為其右焦點(diǎn),
,且該橢圓的離心率為
;
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)
作斜率為
的直線
交橢圓
于
軸上方的點(diǎn)
,交直線
于點(diǎn)
,直線
與橢圓
的另一個交點(diǎn)為
,直線
與直線
交于點(diǎn)
.若
,求
取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
|
某商場經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計(jì),顧客采用的付款期數(shù)
的分布列為
商場經(jīng)銷一件該商品,采用1期付款,其利潤為200元;分2期或3期付款,其利潤為250元;分4期或5期付款,其利潤為300元.
表示經(jīng)銷一件該商品的利潤.
(Ⅰ)求事件A:“購買該商品的3位顧客中,至少有1位采用1期付款”的概率
P(A);
(Ⅱ)求
的分布列及期望![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
為數(shù)列
的前
項(xiàng)和,
,
,平面內(nèi)三個不共線的向量
,
,
滿足
,若點(diǎn)
,
,
在同一直線上,則
______.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com