欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=1+cosβ\\ y=sinβ\end{array}$(β為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4cosθ.
(Ⅰ)將曲線C1的方程化為極坐標(biāo)方程;
(Ⅱ)已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}$($\frac{π}{2}$<α<π,t為參數(shù),t≠0),l與C1交與點(diǎn)A,l與C2交與點(diǎn)B,且|AB|=$\sqrt{3}$,求α的值.

分析 (1)將曲線C1的方程化為普通方程,然后轉(zhuǎn)化求解C1的極坐標(biāo)方程.
(2)曲線l的參數(shù)方程為$\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}$($\frac{π}{2}$<α<π,t為參數(shù),t≠0),化為y=xtanα.由題意可得:|OA|=ρ1=2cosα,|OB|=ρ2=4cosα,利用|AB|=$\sqrt{3}$,即可得出.

解答 解:(1)曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=1+cosβ\\ y=sinβ\end{array}$(β為參數(shù)).
可得(x-1)2+y2=1,x=ρcosθ,y=ρsinθ,
∴C1的極坐標(biāo)方程為ρ2-2ρcosθ=0,
即ρ=2cosθ.
(2)曲線l的參數(shù)方程為$\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}$($\frac{π}{2}$<α<π,t為參數(shù),t≠0),化為y=xtanα.
由題意可得:|OA|=ρ1=2cosα,|OB|=ρ2=4cosα,
∵|AB|=$\sqrt{3}$,
∴|OA|-|OB|=-2cosα=$\sqrt{3}$,即cosα=-$\frac{\sqrt{3}}{2}$.
又$\frac{π}{2}$<α<π,
∴α=$\frac{5π}{6}$.

點(diǎn)評(píng) 本題考查了直角坐標(biāo)與極坐標(biāo)的互化、參數(shù)方程化為普通方程、兩點(diǎn)之間的距離、圓的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)F為拋物線x2=4y的焦點(diǎn),A、B、C為該拋物線上三點(diǎn),若$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$,則|FA|+|FB|+|FC|的值為( 。
A.3B.6C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=ax+lnx.
(Ⅰ)若f(x)在區(qū)間(0,1)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)函數(shù)h(x)=-$\frac{1}{2}$x2-f(x)有兩個(gè)極值點(diǎn)x1、x2,且x1∈[$\frac{1}{2}$,1),求證:|h(x1)-h(x2)|<2-ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.命題“?x∈R,x2>0”的否定是(  )
A.?x∈R,x2≤0B.$?{x_0}∈R,{x_0}^2>0$C.$?{x_0}∈R,{x_0}^2<0$D.$?{x_0}∈R,{x_0}^2≤0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知A(6,3),B(2,3),C(4,1)和D(5,m)四點(diǎn)在同一圓周上,求
(1)圓的方程;
(2)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在直角坐標(biāo)系xOy中,曲線${C_1}:{({x-1})^2}+{y^2}=1$,曲線C2的參數(shù)方程為:$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=sinθ\end{array}\right.$,(θ為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系.
(1)求C1,C2的極坐標(biāo)方程;
(2)射線$y=\frac{{\sqrt{3}}}{3}x({x≥0})$與C1的異于原點(diǎn)的交點(diǎn)為A,與C2的交點(diǎn)為B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的圖象如圖所示,將f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位,得到g(x)的圖象,則函數(shù)g(x)的解析式為(  )
A.g(x)=sin2xB.g(x)=cos2xC.$g(x)=sin(2x+\frac{π}{6})$D.$g(x)=sin(2x+\frac{2π}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow$=($\sqrt{3}$,-1).
(Ⅰ)若$\overrightarrow{a}$∥$\overrightarrow$,求sin2x-6cos2x的值;
(Ⅱ)若f(x)=$\overrightarrow{a}$•$\overrightarrow$,求函數(shù)f(2x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知方程x3+ax2+bx+c=0(a,b,c∈R).
(1)設(shè)a=b=4,方程有三個(gè)不同實(shí)根,求c的取值范圍;
(2)求證:a2-3b>0是方程有三個(gè)不同實(shí)根的必要不充分條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案