分析 (1)將曲線C1的方程化為普通方程,然后轉(zhuǎn)化求解C1的極坐標(biāo)方程.
(2)曲線l的參數(shù)方程為$\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}$($\frac{π}{2}$<α<π,t為參數(shù),t≠0),化為y=xtanα.由題意可得:|OA|=ρ1=2cosα,|OB|=ρ2=4cosα,利用|AB|=$\sqrt{3}$,即可得出.
解答 解:(1)曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=1+cosβ\\ y=sinβ\end{array}$(β為參數(shù)).
可得(x-1)2+y2=1,x=ρcosθ,y=ρsinθ,
∴C1的極坐標(biāo)方程為ρ2-2ρcosθ=0,
即ρ=2cosθ.
(2)曲線l的參數(shù)方程為$\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}$($\frac{π}{2}$<α<π,t為參數(shù),t≠0),化為y=xtanα.
由題意可得:|OA|=ρ1=2cosα,|OB|=ρ2=4cosα,
∵|AB|=$\sqrt{3}$,
∴|OA|-|OB|=-2cosα=$\sqrt{3}$,即cosα=-$\frac{\sqrt{3}}{2}$.
又$\frac{π}{2}$<α<π,
∴α=$\frac{5π}{6}$.
點(diǎn)評(píng) 本題考查了直角坐標(biāo)與極坐標(biāo)的互化、參數(shù)方程化為普通方程、兩點(diǎn)之間的距離、圓的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3 | B. | 6 | C. | 9 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ?x∈R,x2≤0 | B. | $?{x_0}∈R,{x_0}^2>0$ | C. | $?{x_0}∈R,{x_0}^2<0$ | D. | $?{x_0}∈R,{x_0}^2≤0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | g(x)=sin2x | B. | g(x)=cos2x | C. | $g(x)=sin(2x+\frac{π}{6})$ | D. | $g(x)=sin(2x+\frac{2π}{3})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com