【題目】橢圓
經(jīng)過點(diǎn)
,左、右焦點(diǎn)分別是
,
,
點(diǎn)在橢圓上,且滿足
的
點(diǎn)只有兩個(gè).
(Ⅰ)求橢圓
的方程;
(Ⅱ)過
且不垂直于坐標(biāo)軸的直線
交橢圓
于
,
兩點(diǎn),在
軸上是否存在一點(diǎn)
,使得
的角平分線是
軸?若存在求出
,若不存在,說(shuō)明理由.
【答案】(Ⅰ)
;(Ⅱ)詳見解析.
【解析】
(Ⅰ)由題得
點(diǎn)為橢圓的上下頂點(diǎn),得到a,b,c的方程組,解方程組即得橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線
的方程為
,聯(lián)立直線和橢圓方程得到韋達(dá)定理,根據(jù)
得到
. 所以存在點(diǎn)
,使得
的平分線是
軸.
解:(I)由題設(shè)知
點(diǎn)為橢圓的上下頂點(diǎn),所以
,b=c,
,
故
,
,
故橢圓
方程為
.
(Ⅱ)設(shè)直線
的方程為
,聯(lián)立
消
得![]()
設(shè)
,
坐標(biāo)為
,
則有
,
,又
,![]()
假設(shè)在
軸上存在這樣的點(diǎn)
,使得
軸是
的平分線,則有
而
![]()
![]()
將,
,
代入![]()
有
![]()
即![]()
因?yàn)?/span>
,故
. 所以存在點(diǎn)
,使得
的平分線是
軸.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
有兩個(gè)極值點(diǎn).
(1)求
的取值范圍;
(2)
的兩個(gè)極值點(diǎn)
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合
,如果存在
的子集
,
,
同時(shí)滿足如下三個(gè)條件:
①
;
②
,
,
兩兩交集為空集;
③
,則稱集合
具有性質(zhì)
.
(Ⅰ) 已知集合
,請(qǐng)判斷集合
是否具有性質(zhì)
,并說(shuō)明理由;
(Ⅱ)設(shè)集合
,求證:具有性質(zhì)
的集合
有無(wú)窮多個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)觀測(cè),某公路段在某時(shí)段內(nèi)的車流量
(千輛/小時(shí))與汽車的平均速度
(千米/小時(shí))之間有函數(shù)關(guān)系:
.
(1)在該時(shí)段內(nèi),當(dāng)汽車的平均速度
為多少時(shí)車流量
最大?最大車流量為多少?(精確到0.01)
(2)為保證在該時(shí)段內(nèi)車流量至少為10千輛/小時(shí),則汽車的平均速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某精準(zhǔn)扶貧幫扶單位,為幫助定點(diǎn)扶貧村真正脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助精準(zhǔn)扶貧戶利用互聯(lián)網(wǎng)電商渠道銷售當(dāng)?shù)靥禺a(chǎn)蘋果.蘋果單果直徑不同單價(jià)不同,為了更好的銷售,現(xiàn)從該精準(zhǔn)扶貧戶種植的蘋果樹上隨機(jī)摘下了50個(gè)蘋果測(cè)量其直徑,經(jīng)統(tǒng)計(jì),其單果直徑分布在區(qū)間[50,95]內(nèi)(單位:
),統(tǒng)計(jì)的莖葉圖如圖所示:
![]()
(Ⅰ)從單果直徑落在[72,80)的蘋果中隨機(jī)抽取3個(gè),求這3個(gè)蘋果單果直徑均小于76
的概率;
(Ⅱ)以此莖葉圖中單果直徑出現(xiàn)的頻率代表概率.直徑位于[65,90)內(nèi)的蘋果稱為優(yōu)質(zhì)蘋果,對(duì)于該精準(zhǔn)扶貧戶的這批蘋果,某電商提出兩種收購(gòu)方案:
方案
:所有蘋果均以5元/千克收購(gòu);
方案
:從這批蘋果中隨機(jī)抽取3個(gè)蘋果,若都是優(yōu)質(zhì)蘋果,則按6元/干克收購(gòu);若有1個(gè)非優(yōu)質(zhì)蘋果,則按5元/千克收購(gòu);若有2個(gè)非優(yōu)質(zhì)蘋果,則按4.5元/千克收購(gòu);若有3個(gè)非優(yōu)質(zhì)蘋果,則按4元/千克收購(gòu).
請(qǐng)你通過計(jì)算為該精準(zhǔn)扶貧戶推薦收益最好的方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的離心率為
,點(diǎn)
在橢圓
上.
(1)求橢圓
的方程;
(2)若不過原點(diǎn)
的直線
與橢圓
相交于
兩點(diǎn),與直線
相交于點(diǎn)
,且
是線段
的中點(diǎn),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:多面體
中,四邊形
為矩形,二面角
為60°,
,
,
,
,
.
![]()
(1)求證:
平面
;
(2)
線段
上一點(diǎn),若銳二面角
的正弦值為
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
O
中,直線
與拋物線
=2
相交于A、B兩點(diǎn).
(1)求證:命題“如果直線
過點(diǎn)T(3,0),那么
=3”是真命題;
(2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com