已知橢圓
的離心率為
,
![]()
軸被拋物線
截得的線段長等于
的長半軸長.
(1)求
的方程;
(2)設(shè)
與
軸的交點為
,過坐標(biāo)原點
的直線![]()
與
相交于
兩點,直線
分別與
相交于
.
①證明:
為定值;
②記
的面積為
,試把
表示成
的函數(shù),并求
的最大值.
(1)![]()
(2)利用直線與拋物線以及直線于橢圓聯(lián)立方程組來求解向量的坐標(biāo),利用數(shù)量積為零來證明垂直。當(dāng)
,即
時,![]()
【解析】
試題分析:解:(1)由已知
,
,
① ![]()
在
中,令
,得
②
由①②得,![]()
![]()
(2)由
得![]()
設(shè)
,則
![]()
而![]()
![]()
(3)設(shè)![]()
在
上,![]()
![]()
即
,
,
直線
方程為:
代入
, 得
,
,同理![]()
![]()
![]()
由(2)知,
,![]()
令
,![]()
又
在
時,
為增函數(shù),![]()
,
當(dāng)
,即
時,![]()
考點:直線與拋物線,橢圓的位置關(guān)系
點評:解決的關(guān)鍵是利用拋物線的性質(zhì)和橢圓的性質(zhì)得到方程的求解,以及聯(lián)立方程組來得到坐標(biāo),結(jié)合向量的數(shù)量積為零證明垂直,屬于基礎(chǔ)題。
科目:高中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、
| ||||
C、
| ||||
| D、以上均不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 1 |
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| x2 |
| a2 |
| ||
| 3 |
| OA |
| OB |
| 1 |
| 2 |
| OM |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| x2 |
| a2 |
| y2 |
| b2 |
| 1 |
| 2 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com