解:(1)∵n(n+1)(n+2)=

[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]
∴1×2×3=

(1×2×3×4-0×1×2×3)
2×3×4=

(2×3×4×5-1×2×3×4)
…
n(n+1)(n+2)=

[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]
∴1×2×3+2×3×4+…+n(n+1)(n+2)=

[(1×2×3×4-0×1×2×3)+(2×3×4×5-1×2×3×4)+…+n×(n+1)×(n+2)×(n+3)-(n-1)×n×(n+1)×(n+2)=

n(n+1)(n+2)(n+3)
(2)利用數(shù)學(xué)歸納法證:1×2×3+2×3×4+…+n(n+1)(n+2)=

n(n+1)(n+2)(n+3)
①當(dāng)n=1時(shí),左邊=1×2×3,右邊=

=1×2×3,左邊=右邊,等式成立.
②設(shè)當(dāng)n=k(k∈N
*)時(shí),等式成立,
即1×2×3+2×3×4+…+k×(k+1)×(k+2)=

.
則當(dāng)n=k+1時(shí),
左邊=1×2×3+2×3×4+…+k×(k+1)×(k+2)+(k+1)(k+2)(k+3)
=

+(k+1)(k+2)(k+3)
=(k+1)(k+2)(k+3)(

+1)
=

=

.
∴n=k+1時(shí),等式成立.
由①、②可知,原等式對(duì)于任意n∈N
*成立.
分析:(1)根據(jù)已知中給出的在計(jì)算“1×2+2×3+…+n(n+1)”時(shí)化簡(jiǎn)思路,對(duì)1×2×3+2×3×4+…+n(n+1)(n+2)的計(jì)算結(jié)果進(jìn)行化簡(jiǎn),處理的方法就是類(lèi)比k(k+1)=

[k(k+1)(k+2)-(k-1)k(k+1)],將n(n+1)(n+2)進(jìn)行合理的分解.
(2)直接利用數(shù)學(xué)歸納法的證明步驟,先證明n=1時(shí),結(jié)論成立,再設(shè)當(dāng)n=k(k∈N
*)時(shí),等式成立,利用假設(shè)證明n=k+1時(shí),等式成立即可..
點(diǎn)評(píng):類(lèi)比推理的一般步驟是:(1)找出兩類(lèi)事物之間的相似性或一致性;用一類(lèi)事物的性質(zhì)去推測(cè)另一類(lèi)事物的性質(zhì),得出一個(gè)明確的命題(猜想).(2)考查數(shù)學(xué)歸納法證明等式問(wèn)題,證題的關(guān)鍵是利用歸納假設(shè)證明n=k+1時(shí),等式成立,屬于中檔題.