【題目】如圖,在三棱錐
中,
、
、
分別為棱
、
、
的中點,
平面
,
,
,
,則( )
![]()
A.三棱錐
的體積為![]()
B.直線
與直線
垂直
C.平面
截三棱錐
所得的截面面積為![]()
D.點
與點
到平面
的距離相等
【答案】ACD
【解析】
根據(jù)錐體的體積公式可判斷A選項的正誤;假設(shè)
,推導(dǎo)出
平面
,結(jié)合題意可判斷B選項的正誤;取
的中點
,計算出四邊形
的面積,可判斷C選項的正誤;證明出
平面
,可判斷D選項的正誤.
對于A選項,
、
分別為
、
的中點,則
,且
,
平面
,
平面
,
為
的中點,
,
,
所以,
,A選項正確;
對于B選項,
平面
,
平面
,
,
又
,即
,
,
平面
,
、
分別為
、
的中點,
,
平面
,
平面
,
,
平面
,
平面
,
,
,
平面
,
平面
,
,
假設(shè)
,
,
平面
,
而過點
有且只有一條直線與平面
垂直,故B選項錯誤;
對于C選項,取
的中點
,連接
、
,
![]()
、
分別為
、
的中點,
且
,
同理可得
且
,
且
,
所以,四邊形
為平行四邊形,則平面
截三棱錐
所得的截面為平行四邊形
,
易知
,且
,
,所以,
,
故C選項正確;
對于D選項,
,
平面
,
平面
,
平面
,
所以,點
與點
到平面
的距離相等,故D選項正確.
故選:ACD.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,五邊形
中,四邊形
為長方形,
為邊長為
的正三角形,將
沿
折起,使得點
在平面
上的射影恰好在
上.
![]()
(Ⅰ)當(dāng)
時,證明:平面
平面
;
(Ⅱ)若
,求平面
與平面
所成二面角的余弦值的絕對值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)討論函數(shù)的極值點個數(shù);
(2)若
有兩個極值點
,試判斷
與
的大小關(guān)系并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題![]()
的展開式中,僅有第7項的二項式系數(shù)最大,則展開式中的常數(shù)項為495;命題
隨機變量
服從正態(tài)分布
,且
,則
.現(xiàn)給出四個命題:①
,②
,③
,④
,其中真命題的是( )
A.①③B.①④C.②③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣sinx+ax(a>0).
(1)若a=1,求證:當(dāng)x∈(1,
)時,f(x)<2x﹣1;
(2)若f(x)在(0,2π)上有且僅有1個極值點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)消費者協(xié)會為了解本社區(qū)居民網(wǎng)購消費情況,隨機抽取了100位居民作為樣本,就最近一年來網(wǎng)購消費金額(單位:千元),網(wǎng)購次數(shù)和支付方式等進行了問卷調(diào)査.經(jīng)統(tǒng)計這100位居民的網(wǎng)購消費金額均在區(qū)間
內(nèi),按
,
,
,
,
,
分成6組,其頻率分布直方圖如圖所示.
![]()
(1)估計該社區(qū)居民最近一年來網(wǎng)購消費金額的中位數(shù);
(2)將網(wǎng)購消費金額在20千元以上者稱為“網(wǎng)購迷”,補全下面的
列聯(lián)表,并判斷有多大把握認為“網(wǎng)購迷與性別有關(guān)系”;
男 | 女 | 合計 | |
網(wǎng)購迷 | 20 | ||
非網(wǎng)購迷 | 45 | ||
合計 | 100 |
(3)調(diào)査顯示,甲、乙兩人每次網(wǎng)購采用的支付方式相互獨立,兩人網(wǎng)購時間與次數(shù)也互不. 影響.統(tǒng)計最近一年來兩人網(wǎng)購的總次數(shù)與支付方式,所得數(shù)據(jù)如下表所示:
網(wǎng)購總次數(shù) | 支付寶支付次數(shù) | 銀行卡支付次數(shù) | 微信支付次數(shù) | |
80 | 40 | 16 | 24 | |
乙 | 90 | 60 | 18 | 12 |
將頻率視為概率,若甲、乙兩人在下周內(nèi)各自網(wǎng)購2次,記兩人采用支付寶支付的次數(shù)之和為
,求
的數(shù)學(xué)期望.
附:觀測值公式:![]()
臨界值表:
| 0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在《周髀算經(jīng)》中,把圓及其內(nèi)接正方形稱為圓方圖,把正方形及其內(nèi)切圓稱為方圓圖.圓方圖和方圓圖在我國古代的設(shè)計和建筑領(lǐng)域有著廣泛的應(yīng)用.山西應(yīng)縣木塔是我國現(xiàn)存最古老、最高大的純木結(jié)構(gòu)樓閣式建筑,它的正面圖如圖所示.以該木塔底層的邊
作方形,會發(fā)現(xiàn)塔的高度正好跟此對角線長度相等.以塔底座的邊作方形.作方圓圖,會發(fā)現(xiàn)方圓的切點
正好位于塔身和塔頂?shù)姆纸?/span>.經(jīng)測量發(fā)現(xiàn),木塔底層的邊
不少于
米,塔頂
到點
的距離不超過
米,則該木塔的高度可能是(參考數(shù)據(jù):
)( )
![]()
A.
米B.
米C.
米D.
米
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐
中,
,△
為等邊三角形,二面角
的余弦值為
,當(dāng)三棱錐的體積最大時,其外接球的表面積為
.則三棱錐體積的最大值為( )
A.
B.
C.
D.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com