【題目】在
中,兩直角邊AB,AC的長(zhǎng)分別為m,n(其中
),以BC的中點(diǎn)O為圓心,作半徑為r(
)的圓O.
![]()
(1)若圓O與
的三邊共有4個(gè)交點(diǎn),求r的取值范圍;
(2)設(shè)圓O與邊BC交于P,Q兩點(diǎn);當(dāng)r變化時(shí),甲乙兩位同學(xué)均證明出
為定值甲同學(xué)的方法為:連接AP,AQ,AO,利用兩個(gè)小三角形中的余弦定理來(lái)推導(dǎo);乙同學(xué)的方法為;以O為原點(diǎn)建立合適的直角坐標(biāo)系,利用坐標(biāo)法來(lái)計(jì)算.請(qǐng)?jiān)诩滓覂晌煌瑢W(xué)的方法中選擇一種來(lái)證明該結(jié)論,定值用含m、n的式子表示.(若用兩種方法,按第一種方法給分)
【答案】(1)
(2)見(jiàn)解析
【解析】
(1)計(jì)算出圓
與邊
、邊
相切時(shí)的半徑,從而得到滿足要求的r的取值范圍;
(2)甲同學(xué)方法:連接
,
,
,利用余弦定理,表示出
、
,然后通過(guò)計(jì)算,得到![]()
,乙同學(xué)方法:以點(diǎn)
為原點(diǎn),建立坐標(biāo)系,設(shè)點(diǎn)
,將
用坐標(biāo)表示,通過(guò)計(jì)算,得到![]()
.
(1)因?yàn)?/span>
,故當(dāng)圓
與邊
相切時(shí)
,
此時(shí)圓
與
的三邊共有3個(gè)交點(diǎn);
當(dāng)圓
與邊
相切時(shí),
,
此時(shí)圓
與
的三邊共有5個(gè)交點(diǎn),
故當(dāng)
時(shí),圓
與
的三邊共有4個(gè)交點(diǎn).
(2)甲同學(xué)方法:連接
,
,
,
在
中,由余弦定理可得:
①
在
中,由余弦定理可得:
②
由
,得
,
又
,
故①
②得:
,
故![]()
乙同學(xué)方法:以點(diǎn)
為原點(diǎn),建立如圖所示直角坐標(biāo)系,
易知![]()
設(shè)點(diǎn)
,則![]()
![]()
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中裝有除顏色外形狀大小完全相同的6個(gè)小球,其中有4個(gè)編號(hào)為1,2, 3, 4的紅球,2個(gè)編號(hào)為A、B的黑球,現(xiàn)從中任取2個(gè)小球.;
(1)求所取2個(gè)小球都是紅球的概率;
(2)求所取的2個(gè)小球顏色不相同的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了11月1日至11月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如表資料:
日期 | 11月1日 | 11月2日 | 11月3日 | 11月4日 | 11月5日 |
溫差 | 8 | 11 | 12 | 13 | 10 |
發(fā)芽數(shù) | 16 | 25 | 26 | 30 | 23 |
設(shè)農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(參考:
,
)
(1)若選取的是11月1日與11月5日的兩組數(shù)據(jù)進(jìn)行檢驗(yàn),請(qǐng)根據(jù)11月2日至11月4日的三組數(shù)據(jù),求出
關(guān)于
的線性回歸方程
;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(1)中所得的線性回歸方程是否可靠?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形
和
均為平行四邊形,點(diǎn)
在平面
內(nèi)的射影恰好為點(diǎn)
,以
為直徑的圓經(jīng)過(guò)點(diǎn)
,
,
的中點(diǎn)為
,
的中點(diǎn)為
,且
.
(Ⅰ)求證:平面
平面
;
(Ⅱ)求二面角
的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若橢圓
:
(
)與橢圓
:
(
)的焦距相等,給出如下四個(gè)結(jié)論:
①
和
一定有交點(diǎn);
②若
,則
;
③若
,則
;
④設(shè)
與
在第一象限內(nèi)相交于點(diǎn)
,若
,則
.
其中,所有正確結(jié)論的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“微信搶紅包”自2015年以來(lái)異常火爆,在某個(gè)微信群某次進(jìn)行的搶紅包活動(dòng)中,若所發(fā)紅包的總金額為8元,被隨機(jī)分配為1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人搶?zhuān)咳酥荒軗屢淮,則甲、乙二人搶到的金額之和不低于3元的概率是 ( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2)當(dāng)
時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
已知
(
為常數(shù),
且
),設(shè)
是首項(xiàng)為4,公差為2的等差數(shù)列.
(1)求證:數(shù)列{
}是等比數(shù)列;
(2)若
,記數(shù)列
的前n項(xiàng)和為
,當(dāng)
時(shí),求
;
(3)若
,問(wèn)是否存在實(shí)數(shù)
,使得
中每一項(xiàng)恒小于它后面的項(xiàng)?
若存在,求出實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在三棱錐
中,
是等腰直角三角形,且![]()
平面![]()
![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)若
為
的中點(diǎn),求二面角
的余弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com