【題目】已知橢圓
的中心為原點
,左焦點為
,離心率為
,不與坐標軸垂直的直線
與橢圓
交于
兩點.
(1)若
為線段
的中點,求直線
的方程.
(2)求點
是直線
上一點,點
在橢圓
上,且滿足
,設直線
與直線
的斜率分別為
,問:
是否為定值?若是,請求出
的值;若不是,請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】已知
為坐標原點,橢圓
的右焦點為
,離心率為
,過點
的直線![]()
與
相交于
兩點,點
為線段
的中點.
(1)當
的傾斜角為
時,求直線
的方程;
(2)試探究在
軸上是否存在定點
,使得
為定值?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系
中,傾斜角為
的直線
的參數(shù)方程為
(
為參數(shù)).以坐標原點為極點,以
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程是
.
(Ⅰ)寫出直線
的普通方程和曲線
的直角坐標方程;
(Ⅱ)若直線
經(jīng)過曲線
的焦點
且與曲線
相交于
兩點,設線段
的中點為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐
中,底面
是平行四邊形,
,平面
底面
,且
,
,
分別為
,
的中點.
![]()
(1)求證:
平面
;
(2)求證:平面
平面
;
(3)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的中心為原點
,左焦點為
,離心率為
,不與坐標軸垂直的直線
與橢圓
交于
兩點.
(1)若
為線段
的中點,求直線
的方程.
(2)若點
是直線
上一點,點
在橢圓
上,且滿足
,設直線
與直線
的斜率分別為
,問:
是否為定值?若是.請求出
的值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學2018年的高考考生人數(shù)是2015年高考考生人數(shù)的
倍,為了更好地對比該?忌纳龑W情況,統(tǒng)計了該校2015年和2018年的高考情況,得到如圖柱狀圖:
![]()
則下列結(jié)論正確的是
![]()
A. 與2015年相比,2018年一本達線人數(shù)減少
B. 與2015年相比,2018年二本達線人數(shù)增加了
倍
C. 2015年與2018年藝體達線人數(shù)相同
D. 與2015年相比,2018年不上線的人數(shù)有所增加
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系
內(nèi),動點
到定點
的距離與
到定直線
距離之比為
.
(Ⅰ)求動點
的軌跡
的方程;
(Ⅱ)設點
是軌跡
上兩個動點直線
與軌跡
的另一交點分別為
且直線
的斜率之積等于
,問四邊形
的面積
是否為定值?請說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com