(本小題滿分14分)設(shè)函數(shù)
,
.
(Ⅰ)當(dāng)
時(shí),
在
上恒成立,求實(shí)數(shù)
的取值范圍;![]()
(Ⅱ)當(dāng)
時(shí),若函數(shù)
在
上恰有兩個(gè)不同零點(diǎn),求實(shí)數(shù)
的取值
范圍;![]()
(Ⅲ)是否存在實(shí)數(shù)
,使函數(shù)
和函數(shù)
在公共定義域上具有相同的單調(diào)性?若存在,求出
的值,若不存在,說明理由.
解:(Ⅰ)由
a=0,f(x)≥h(x)可得-mlnx≥-x 即
┉┉┉┉┉┉┉┉1分
記
,則f(x)≥h(x)在(1,+∞)上恒成立等價(jià)于
.
求得
┉┉┉┉┉┉┉┉2分
當(dāng)
時(shí);
;當(dāng)
時(shí),
┉┉┉┉┉┉┉┉3分
故
在x=e處取得極小值,也是最小值,
即
,故
. ┉┉┉┉┉┉┉┉4分
(Ⅱ)函數(shù)k(x)=f(x)-h(x)在[1,3]上恰有兩個(gè)不同的零點(diǎn)等價(jià)于方程x-2lnx=a,在[1,3]上恰有兩個(gè)相異實(shí)根。┉┉┉┉┉┉┉┉5分
令g(x)=x-2lnx,則
┉┉┉┉┉┉┉┉6分
當(dāng)
時(shí),
,當(dāng)
時(shí),![]()
g(x)在[1,2]上是單調(diào)遞減函數(shù),在
上是單調(diào)遞增函數(shù)。
故
┉┉┉┉┉┉┉┉8分
又g(1)=1,g(3)=3-2ln3
∵g(1)>g(3),∴只需g(2)
<a≤g(3),
故a的取值范圍是(2-2ln2,3-2ln3) ┉┉┉┉┉┉┉┉9分
(Ⅲ)存在m=
,使得函數(shù)f(x)和函數(shù)h(x)在公共定
義域上具有相同的單調(diào)性
,函數(shù)f(x)的定義域?yàn)椋?,+∞)。┉┉┉┉┉┉10分
若
,則![]()
,函數(shù)f(x)在(0,+
∞)上單調(diào)遞增,不合題意;┉┉┉11分
若
,由
可得2x2-m>0,解得x>
或x<-
(舍去)
故
時(shí),函數(shù)的單調(diào)遞增區(qū)間為(
,+∞)
單調(diào)遞減區(qū)間為(0,
) ┉┉┉┉┉┉┉┉12分
而h(x)在(0,+∞)上的單調(diào)遞減區(qū)間是(0,
),單調(diào)遞增區(qū)間是(
,+∞)
故只需
=
,解之得m=
┉┉┉┉┉┉┉┉13分
即當(dāng)m=
時(shí),函數(shù)f(x)和函數(shù)h(x)在其公共定義域上具有相同的單調(diào)性。┉14分.
解析
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
.
(1)求
的單調(diào)區(qū)間;
(2)設(shè)
,若對(duì)任意
,均存在
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知
.
(I)求函數(shù)
在
上的最小值;
(II)對(duì)一切
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
,
.
(1)求
的單調(diào)區(qū)間和最小值;
(2)討論
與
的大小關(guān)系;![]()
(3)求
的取值范圍,使得
<
對(duì)任意
>0成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
函數(shù)
,其中
為常數(shù).
(1)證明:對(duì)任意
,
的圖象恒過定點(diǎn);
(2)當(dāng)
時(shí),判斷函數(shù)
是否存在極值?若存在,求出極值;若不存在,說明理由;
(3)若對(duì)任意
時(shí),
恒為定義域上的增函數(shù),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)函數(shù)
.
(Ⅰ)若
,
在
處的切線相互垂直,求這兩個(gè)切線方程;
(Ⅱ)若
單調(diào)遞增,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)
.
(Ⅰ)設(shè)
,討論
的單調(diào)性;
(Ⅱ)若對(duì)任意
恒有
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知x = 1是
的一個(gè)極值點(diǎn)
(I)求b的值;
(II)求函數(shù)f(x)的單調(diào)減區(qū)間;
(III)設(shè)
,試問過點(diǎn)(2,5)可作多少條直線與曲線
相切?請(qǐng)說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com