【題目】如圖,在三棱錐ABCD中,AB=AC=BD=CD=3,AD=BC=2,點M,N分別為AD,BC的中點,則異面直線AN,CM所成的角的余弦值是( ) ![]()
A.![]()
B.﹣ ![]()
C.﹣ ![]()
D.![]()
【答案】A
【解析】解:由題意:三棱錐ABCD中,連結ND,取ND 的中點為E,連結ME, ![]()
則ME∥AN,異面直線AN,CM所成的角就是∠EMC.
∵AB=AC=BD=CD=3,AD=BC=2,點M,N分別為AD,BC的中點,
∴AN=
,ME=EN=
,MC=2
,
又∵EN⊥NC,∴EC=
=
;
cos∠EMC=
=
=
.
∴異面直線AN,CM所成的角的余弦值是
.
故選A.
【考點精析】根據(jù)題目的已知條件,利用異面直線及其所成的角的相關知識可以得到問題的答案,需要掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關系.
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:方程x2+mx+1=0有兩個不相等的實根;
命題q:函數(shù)f(x)=lg[x2﹣2(m+1)x+m(m+1)]的定義域為R,
若“p∨q”為真,“p∧q”為假,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)設A(x1 , f(x1)),B(x2 , f(x2)),且x1≠x2 , 證明:
<f′(
).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
的圖象關于原點對稱,其中
為常數(shù).
(1)求
的值;
(2)當
時,
恒成立,求實數(shù)
的取值范圍;
(3)若關于
的方程
在
上有解,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列函數(shù)為偶函數(shù)且在區(qū)間(0,+∞)上單調(diào)遞增的是( )
A.y= ![]()
B.y=﹣x2+1
C.y=lg|x|
D.y=3x
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于區(qū)間
,若函數(shù)
同時滿足:①
在
上是單調(diào)函數(shù);②函數(shù)
,
的值域是
,則稱區(qū)間
為函數(shù)
的“保值”區(qū)間.
(
)求函數(shù)
的所有“保值”區(qū)間.
(
)函數(shù)
是否存在“保值”區(qū)間?若存在,求出
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=aln(x+1)﹣x2在區(qū)間(0,1)內(nèi)任取兩個實數(shù)p,q,且p≠q,不等式
恒成立,則實數(shù)a的取值范圍為( )
A.[15,+∞)
B.![]()
C.[1,+∞)
D.[6,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的兩頂點坐標A(﹣1,0),B(1,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點分別為P,Q,R,|CP|=1(從圓外一點到圓的兩條切線段長相等),動點C的軌跡為曲線M. ![]()
(I)求曲線M的方程;
(Ⅱ)設直線BC與曲線M的另一交點為D,當點A在以線段CD為直徑的圓上時,求直線BC的方程.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com