已知點(diǎn)P(4, 4),圓C:
與橢圓E:
有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),直線PF1與圓C相切.![]()
(Ⅰ)求m的值與橢圓E的方程;(Ⅱ)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求
的取值范圍.
(1)
。
(2)
。
解析試題分析:(1)代入點(diǎn)A(3,1)得m=1或5,得m=1 2分
設(shè)PF
斜率為k,![]()
5分![]()
7分
列方程組得:
解得:![]()
所求橢圓方程為
10分
(2)設(shè)點(diǎn)Q
12分
16分
考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系,平面向量的坐標(biāo)運(yùn)算,三角函數(shù)輔助角公式。
點(diǎn)評(píng):中檔題,求橢圓的標(biāo)準(zhǔn)方程,主要運(yùn)用了橢圓的幾何性質(zhì),a,b,c,e的關(guān)系。曲線關(guān)系問(wèn)題,往往通過(guò)聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理,簡(jiǎn)化解題過(guò)程。通過(guò)向量的坐標(biāo)運(yùn)算,得到三角函數(shù)式,應(yīng)用輔助角公式“化一”后,確定數(shù)量積的范圍。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定義:設(shè)
分別為曲線
和
上的點(diǎn),把
兩點(diǎn)距離的最小值稱為曲線
到
的距離.
(1)求曲線
到直線
的距離;
(2)已知曲線
到直線
的距離為
,求實(shí)數(shù)
的值;
(3)求圓
到曲線
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
:
的右焦點(diǎn)
在圓
上,直線
交橢圓于
、
兩點(diǎn).
(Ⅰ) 求橢圓
的方程;
(Ⅱ) 若OM⊥ON(
為坐標(biāo)原點(diǎn)),求
的值;
(Ⅲ)
設(shè)點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
(
與
不重合),且直線![]()
與
軸交于點(diǎn)
,試問(wèn)
的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知:圓
過(guò)橢圓
的兩焦點(diǎn),與橢圓有且僅有兩個(gè)公共點(diǎn):直線
與圓
相切 ,與橢圓
相交于A,B兩點(diǎn)記
(Ⅰ)求橢圓的方程;
(Ⅱ)求
的取值范圍;
(Ⅲ)求
的面積S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
:![]()
過(guò)點(diǎn)
,上、下焦點(diǎn)分別為
、
,
向量
.直線
與橢圓交于
兩點(diǎn),線段
中點(diǎn)為
.
(1)求橢圓
的方程;
(2)求直線
的方程;
(3)記橢圓在直線
下方的部分與線段
所圍成的平面區(qū)域(含邊界)為
,若曲線
與區(qū)域
有公共點(diǎn),試求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)是(0,
),(0,
),又點(diǎn)![]()
在橢圓
上.
(1)求橢圓
的方程;
(2)已知直線
的斜率為
,若直線
與橢圓
交于
、
兩點(diǎn),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線
的焦點(diǎn)為
,點(diǎn)
是拋物線上的一點(diǎn),且其縱坐標(biāo)為4,
.
(1)求拋物線的方程;
(2)設(shè)點(diǎn)
是拋物線上的兩點(diǎn),
的角平分線與
軸垂直,求直線AB的斜率;
(3)在(2)的條件下,若直線
過(guò)點(diǎn)
,求弦
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
.
(Ⅰ)設(shè)橢圓的半焦距
,且
成等差數(shù)列,求橢圓
的方程;
(Ⅱ)設(shè)(1)中的橢圓
與直線
相交于
兩點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
橢圓
的右焦點(diǎn)為
,右準(zhǔn)線為
,離心率為
,點(diǎn)
在橢圓上,以
為圓心,
為半徑的圓與
的兩個(gè)公共點(diǎn)是
.![]()
(1)若
是邊長(zhǎng)為
的等邊三角形,求圓的方程;
(2)若
三點(diǎn)在同一條直線
上,且原點(diǎn)到直線
的距離為
,求橢圓方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com