(本小題滿分14分) ![]()
已知圓
方程為:
.
(1)直線
過點(diǎn)
,且與圓
交于
、
兩點(diǎn),若
,求直線
的方程;
(2)過圓
上一動(dòng)點(diǎn)
作平行于
軸的直線
,設(shè)
與
軸的交點(diǎn)為
,若向量
,求動(dòng)點(diǎn)
的軌跡方程,并說明此軌跡是什么曲線.![]()
(Ⅰ)
或
(Ⅱ) ![]()
:(1)①當(dāng)直線
垂直于
軸時(shí),則此時(shí)直線方程為
,
與圓的兩個(gè)交點(diǎn)坐標(biāo)為
和
,其距離為
滿足題意 …………………………………1分
②若直線
不垂直于
軸,設(shè)其方程為
,即
設(shè)圓心到此直線的距離為
,則
,得
…………………3分
∴
,解得
,…5分 故所求直線方程為
……6分
綜上所述,所求直線方程為
或
……7分
(2)設(shè)點(diǎn)
的坐標(biāo)為
,
點(diǎn)坐標(biāo)為
,則
點(diǎn)坐標(biāo)是
……9分
∵
,∴
即
,
…………………11分
又∵
,∴
∴
點(diǎn)的軌跡方程是
, 13分
軌跡是中心在原點(diǎn),焦點(diǎn)在
軸,長軸為
、短軸為
的橢圓,除去短軸端點(diǎn)!14分
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為
(a>b>0),曲線C2的方程為y=
,且曲線C1與C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知
=2,點(diǎn)(
)在函數(shù)
的圖像上,其中
=
.
(1)證明:數(shù)列
}是等比數(shù)列;
(2)設(shè)
,求
及數(shù)列{
}的通項(xiàng)公式;
(3)記
,求數(shù)列{
}的前n項(xiàng)和
,并證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測統(tǒng)計(jì)發(fā)現(xiàn),第
天(
)的銷售價(jià)格(單位:元)為
,第
天的銷售量為
,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額
關(guān)于第
天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知
的圖像在點(diǎn)
處的切線與直線
平行.
⑴ 求
,
滿足的關(guān)系式;
⑵ 若
上恒成立,求
的取值范圍;
⑶ 證明:
(
)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com