【題目】如圖,在四棱錐
中,
,
,
,
,
,點(diǎn)
為
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)若平面
平面
,求直線
與平面
所成角的正弦值.
【答案】(1)見(jiàn)解析;(2)![]()
【解析】分析:(1)取
中點(diǎn)
,連結(jié)
.先證明
,再證明
平面
.(2)利用向量的方法求直線
與平面
所成角的正弦值.
詳解:(1)取
中點(diǎn)
,連結(jié)
.
因?yàn)辄c(diǎn)
為
的中點(diǎn),所以
且
,
又因?yàn)?/span>
且
,所以
且
,
所以四邊形
為平行四邊形,所以
,
又
平面
,
平面
,所以
平面
.
(2)在平面
中,過(guò)
作
,在平面
中,過(guò)
作
.
因?yàn)槠矫?/span>
平面
,平面
平面
,所以
平面
,
所以
,所以
兩兩互相垂直.
以
為原點(diǎn),向量
的方向分別為
軸、
軸、
軸的正方向建立空間直角坐標(biāo)系
(如圖),則
,
,
,
,
, 7分
所以
,
,
,
設(shè)
是平面
的一個(gè)法向量,
則
即![]()
取
,得
.
設(shè)直線
與平面
所成角為
.
則
,
所以直線
與平面
所成角的正弦值為
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
過(guò)點(diǎn)
,且兩個(gè)焦點(diǎn)的坐標(biāo)分別為
,
.
(1)求
的方程;
(2)若
,
,
為
上的三個(gè)不同的點(diǎn),
為坐標(biāo)原點(diǎn),且
,求證:四邊形
的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解人們對(duì)“2019年3月在北京召開(kāi)的第十三屆全國(guó)人民代表大會(huì)第二次會(huì)議和政協(xié)第十三屆全國(guó)委員會(huì)第二次會(huì)議”的關(guān)注度,某部門從年齡在15歲到65歲的人群中隨機(jī)調(diào)查了100人,并得到如圖所示的年齡頻率分布直方圖,在這100人中關(guān)注度非常髙的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如右表所示:
![]()
年齡 | 關(guān)注度非常高的人數(shù) |
| 15 |
| 5 |
| 15 |
| 23 |
| 17 |
(Ⅰ)由頻率分布直方圖,估計(jì)這100人年齡的中位數(shù)和平均數(shù);
(Ⅱ)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的
列聯(lián)表,據(jù)此表,能否在犯錯(cuò)誤的概率不超過(guò)
的前提下,認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“兩會(huì)”的關(guān)注度存在差異?
(Ⅲ)按照分層抽樣的方法從年齡在35歲以下的人中任選六人,再?gòu)牧酥须S機(jī)選兩人,求兩人中恰有一人年齡在25歲以下的概率是多少.
45歲以下 | 45歲以上 | 總計(jì) | |
非常髙 | |||
一般 | |||
總計(jì) |
參考數(shù)據(jù):
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正三棱柱
的所有棱長(zhǎng)都相等,
分別為
的中點(diǎn).現(xiàn)有下列四個(gè)結(jié)論:
:
;
:
;
:
平面
;
:異面直線
與
所成角的余弦值為
.
其中正確的結(jié)論是
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
,函數(shù)
.
(1)若
無(wú)零點(diǎn),求實(shí)數(shù)
的取值范圍;
(2)若
有兩個(gè)相異零點(diǎn)
,
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年2月9-25日,第23屆冬奧會(huì)在韓國(guó)平昌舉行.4年后,第24屆冬奧會(huì)將在中國(guó)北京和張家口舉行.為了宣傳冬奧會(huì),某大學(xué)在平昌冬奧會(huì)開(kāi)幕后的第二天,從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對(duì)是否收看平昌冬奧會(huì)開(kāi)幕式情況進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:
收看 | 沒(méi)收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(Ⅰ)根據(jù)上表說(shuō)明,能否有
的把握認(rèn)為,收看開(kāi)幕式與性別有關(guān)?
(Ⅱ)現(xiàn)從參與問(wèn)卷調(diào)查且收看了開(kāi)幕式的學(xué)生中,采用按性別分層抽樣的方法選取8人,參加2022年北京冬奧會(huì)志愿者宣傳活動(dòng).
(ⅰ)問(wèn)男、女學(xué)生各選取多少人?
(ⅱ)若從這8人中隨機(jī)選取2人到校廣播站開(kāi)展冬奧會(huì)及冰雪項(xiàng)目宣傳介紹,求恰好選到一名男生一名女生的概率P.
附:
,其中
.
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2)若
,試討論函數(shù)
零點(diǎn)的個(gè)數(shù);
(3)在(2)的條件下,若
有兩個(gè)零點(diǎn)
,![]()
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把函數(shù)
的圖象向右平移一個(gè)單位,所得圖象與函數(shù)
的圖象關(guān)于直線
對(duì)稱;已知偶函數(shù)
滿足
,當(dāng)
時(shí),
;若函數(shù)
有五個(gè)零點(diǎn),則
的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com