【題目】如圖,在菱形
中,
,點(diǎn)
為
中點(diǎn),
平面![]()
![]()
(1)求證:
平面
.
(2)若
,
,求直線
與平面
所成角的正弦值.
【答案】(1)見(jiàn)解析(2)![]()
【解析】
(1)要證CD⊥平面PAN,可由PA⊥平面ABCD得出CD⊥PA;△ACD為正三角形,點(diǎn)N為CD中點(diǎn),得出CD⊥AN,且PA∩AN=A而證出.
(2)過(guò)A作AH⊥PN于H,則AH⊥平面PCD,連接CH,則∠ACH為直線AC與平面PCD所成角.在RT△ACH中求解即可.
(1)證明:因?yàn)樗倪呅?/span>ABCD為菱形,∠BAD=120°,所以△ACD為正三角形,所以AC=AD,又因?yàn)辄c(diǎn)N為CD中點(diǎn),所以CD⊥AN.
∵PA⊥平面ABCD,CD平面ABCD,∴CD⊥PA.PA∩AN=A,∴CD⊥平面PAN.
(2)由(1)知,CD⊥平面PAN,CD平面PCD,∴平面PAN⊥平面PCD,且平面PAN∩平面PCD=PN,
過(guò)A作AH⊥PN于H,則AH⊥平面PCD,連接CH,則∠ACH為直線AC與平面PCD所成角.
在RT△PAN中,PA
,AN
,由勾股定理得出PN
,根據(jù)面積相等法得AH
.
在RT△ACH中,sin∠ACH
.即直線AC與平面PCD所成角的正弦值是
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l:mx﹣y=1,若直線l與直線x+m(m﹣1)y=2垂直,則m的值為_____,動(dòng)直線l:mx﹣y=1被圓C:x2﹣2x+y2﹣8=0截得的最短弦長(zhǎng)為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)x千件,需另投入成本為C(x),當(dāng)年產(chǎn)量不足80千件時(shí),C(x)=
x2+10x(萬(wàn)元).當(dāng)年產(chǎn)量不小于80千件時(shí),C(x)=51x+
-1 450(萬(wàn)元).每件商品售價(jià)為0.05萬(wàn)元.通過(guò)市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.
(1)寫(xiě)出年利潤(rùn)L(x)(萬(wàn)元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C經(jīng)過(guò)點(diǎn)A(﹣1,3),B(3,3)兩點(diǎn),且圓心C在直線x﹣y+1=0上.
(1)求圓C的方程;
(2)求經(jīng)過(guò)圓上一點(diǎn)A(﹣1,3)的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點(diǎn),PA=2,AB=1.
![]()
(Ⅰ)求四棱錐P﹣ABCD的體積V;
(Ⅱ)若F為PC的中點(diǎn),求證:平面PAC⊥平面AEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在4件產(chǎn)品中,有一等品2件,二等品1件(一等品與二等品都是正品),次品1件,現(xiàn)從中任取2件,則下列說(shuō)法正確的是( )
A.兩件都是一等品的概率是![]()
B.兩件中有1件是次品的概率是![]()
C.兩件都是正品的概率是![]()
D.兩件中至少有1件是一等品的概率是![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,直線
的參數(shù)方程為
,(
為參數(shù)).以原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)寫(xiě)出直線
的極坐標(biāo)方程與曲線
的直角坐標(biāo)方程;
(2)已知與直線
平行的直線
過(guò)點(diǎn)
,且與曲線
交于
兩點(diǎn),試求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,其中
.
(Ⅰ)當(dāng)
時(shí),求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)求證: 當(dāng)
時(shí),
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com