科目:高中數(shù)學(xué) 來源: 題型:
| π |
| 4 |
| 2 |
| x2 |
| 16 |
| y2 |
| 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆海南省高二上學(xué)期期末文科數(shù)學(xué)試題(解析版) 題型:解答題
(本小題滿分12分)已知直線
的參數(shù)方程為
(
為參數(shù)),若以直角坐標(biāo)系
的
點為極點,
方向為極軸,選擇相同的長度單位建立極坐標(biāo)系,得曲線
的極坐標(biāo)方程為![]()
(1)將直線
的參數(shù)方程化為普通方程,把曲線
的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若直線
與曲線
交于
兩點,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省泰州市姜堰市高三(下)期初數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆吉林長春市高二第二次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
⊙O1和⊙O2的極坐標(biāo)方程分別為
,
.
⑴把⊙O1和⊙O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
⑵求經(jīng)過⊙O1,⊙O2交點的直線的直角坐標(biāo)方程.
【解析】本試題主要是考查了極坐標(biāo)的返程和直角坐標(biāo)方程的轉(zhuǎn)化和簡單的圓冤啊位置關(guān)系的運用
(1)中,借助于公式
,
,將極坐標(biāo)方程化為普通方程即可。
(2)中,根據(jù)上一問中的圓的方程,然后作差得到交線所在的直線的普通方程。
解:以極點為原點,極軸為x軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.
(I)
,
,由
得
.所以
.
即
為⊙O1的直角坐標(biāo)方程.
同理
為⊙O2的直角坐標(biāo)方程.
(II)解法一:由
解得
,![]()
即⊙O1,⊙O2交于點(0,0)和(2,-2).過交點的直線的直角坐標(biāo)方程為y=-x.
解法二: 由
,兩式相減得-4x-4y=0,即過交點的直線的直角坐標(biāo)方程為y=-x
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com