分析 (1)根據(jù)f(x)為奇函數(shù),則f(0)=0,建立方程關(guān)系即可求a的值;
(2)根據(jù)函數(shù)單調(diào)性的定義即可證明:不論a為何值f(x)在R上都單調(diào)遞增;
(3)在(1)的條件下,結(jié)合指數(shù)函數(shù)的單調(diào)性即可求f(x)的值域.
解答 解:(1)∵f(x)的定義域?yàn)镽,且f(x)是奇函數(shù),…(1分)
則f(0)=0,f(0)=$a-\frac{1}{{{2^0}+1}}=a-\frac{1}{2}$=0(2分)
∴$a=\frac{1}{2}$…(3分) 經(jīng)檢驗(yàn)$a=\frac{1}{2}$滿足題意.…(4分).(利用定義也可)
(2)設(shè)x1<x2,(…5分)
則f(x1)-f(x2)=$(a-\frac{1}{{{2^{x_1}}+1}})-$$(a-\frac{1}{{{2^{x_2}}+1}})$=-$(\frac{1}{{{2^{x_1}}+1}}-$$\frac{1}{{2}^{{x}_{2}}+1})$
=-$\frac{{2}^{{x}_{2}}-{2}^{{x}_{1}}}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$,
∵x1<x2
∴∴${2}^{{x}_{2}}$-${2}^{{x}_{1}}$>0,
則f(x1)-f(x2)<0,即f(x1)<f(x2),
即不論a為何值f(x)在R上都單調(diào)遞增.
(3)由(1)知$f(x)=\frac{1}{2}-\frac{1}{{{2^x}+1}}$,
∵2x+1>1,0<$\frac{1}{{2}^{x}+1}$<1,…(9分),
∴$-1<-\frac{1}{{{2^x}+1}}<0$,∴$-\frac{1}{2}<f(x)<\frac{1}{2}$…(11分)
則f(x)的值域?yàn)?(-\frac{1}{2},\frac{1}{2})$.…(12分)
點(diǎn)評 本題主要考查函數(shù)奇偶性和單調(diào)性的判斷和應(yīng)用,利用定義法是解決本題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 若m∥α,m∥β,則α∥β | B. | 若m⊥α,m⊥n,則n∥α | C. | 若m∥α,m∥n,則n∥α | D. | 若m⊥α,m∥β,則α⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com