欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.化簡:
(1)$\frac{sin(180°-α)sin(270°-α)tan(90°-α)}{sin(90°+α)tan(270°+α)tan(360°-α)}$;
(2)1+sin(α-2π)•sin(π+α)-2cos2(-α)

分析 利用三角函數(shù)的誘導公式進行化簡即可.

解答 解:(1)原式=$\frac{sinα(-sin(90°-α))cotα}{cosαtan(90°+α)tan(-α)}$=$\frac{-sinαcosαcotα}{cosαcotαtanα}$=-cosα;
(2)原式=1+sinα•(-sinα)-2cos2α=1-sin2α-2cos2α=cos2α-2cos2α=-cos2α.

點評 本題主要考查三角函數(shù)的化簡和求解,利用三角函數(shù)的誘導公式是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.已知公差不為0的等差數(shù)列{an}滿足a1,a3,a4成等比數(shù)列,Sn為{an}的前n項和,則$\frac{{{S_3}-{S_2}}}{{{S_5}-{S_3}}}$的值為( 。
A.2B.3C.$\frac{1}{5}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.x,y,z∈R,則($\frac{{x}^{2}-2xy-4xz+8yz}{{y}^{2}-4yz+4{z}^{2}}$)min=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在直角梯形ABCD中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E、F分別為AB、BC的中點.點P在以A為圓心,AD為半徑的圓弧$\widehat{DE}$上變動(如圖所示),若$\overrightarrow{AP}$=λ$\overrightarrow{ED}$+μ$\overrightarrow{AF}$,其中λ,μ∈R.則2λ-μ的取值范圍是[-1,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=ax2+1,g(x)=x3+bx,其中a>0,b>0.
(Ⅰ)若曲線y=f(x)與曲線y=g(x)在它們的交點P(2,m)處有相同的切線(P為切點),求a,b的值;
(Ⅱ)令h(x)=f(x)+g(x),若函數(shù)h(x)的單調(diào)遞減區(qū)間為[-$\frac{a}{2}$,-$\frac{\sqrt}{3}$],
(1)求函數(shù)h(x)在區(qū)間(-∞,-1]上的最大值t(a);
(2)若|h(x)|≤3在x∈[-2,0]上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.若$\underset{lim}{n→∞}$g(x)=0,且在x0的某去心鄰域內(nèi)g(x)≠0,$\underset{lim}{n→∞}$$\frac{f(x)}{g(x)}$=A,則$\underset{lim}{n→∞}$f(x)必等于0,為什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.己知函數(shù)f(x-1)=x2+x+1,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知tanα=2,
 (1)求tan(α+$\frac{π}{4}$)的值.
 (2)求$\frac{cos(\frac{3π}{2}+2α)}{si{n}^{2}α+sinαcosα-cos2α-1}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}滿足a1=1,|an+1-an|=pn,n∈N+.若{an}是遞增數(shù)列,且a1,2a2,3a3成等差數(shù)列,求p的值.

查看答案和解析>>

同步練習冊答案